Effect of Fluoxetine on the Induction of Long-term Potentiation in Rat Frontal Cortex

  • Kim, Hwang-Soo (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Hyun-Sok (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Hahn, Sang-June (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Myung-Jun (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Yoon, Shin Hee (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Jo, Yang-Hyeok (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Kim, Myung-Suk (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Rhie, Duck-Joo (Department of Physiology, College of Medicine, The Catholic University of Korea)
  • Published : 2004.12.21

Abstract

Serotonin (5-hydroxytroptamine, 5-HT) has been shown to affect the induction of long-term potentiation (LTP) in the cortex such as the hippocampus, the visual cortex and the prefrontal cortex. Fluoxetine, as a selective serotonin reuptake inhibitor, is used in the management of a wide variety of psychological diseases. To study the effect of fluoxetine on the induction of LTP, we recorded the field potential in layer II/III of the frontal cortex from 3-wk-old. LTP was induced in horizontal input by theta burst stimulation (TBS). TBS with two-folds intensity of the test stimulation induced LTP, which was blocked by application of D-AP5 $(50 {\mu}M)$, an NMDA receptor antagonist. Whereas bath application of 5-HT $(10 {\mu}M)$ inhibited the induction of LTP, treatment with the 5-HT depleting agent, para-chloroamphetamine $(PCA,\;10{\mu}M)$, for 2hr did not affect the induction of LTP. Bath application of fluoxetine (1, 3, and $10 {\mu}M)$ suppressed the induction of LTP in concentration-dependent manner, however, fluoxetine did not inhibit the induction of LTP in 5-HT-depleted slices. These results indicate that fluoxetine may inhibit the induction of LTP by modulating serotonergic mechanism in the rat frontal cortex.

Keywords

References

  1. Altamura AC, Moro AR, Percudani M. Clinical pharmacokinetics of fluoxetine. Clin Pharmacokinet 26: 201-214, 1994 https://doi.org/10.2165/00003088-199426030-00004
  2. Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083-1152, 1999 https://doi.org/10.1016/S0028-3908(99)00010-6
  3. Beique JC, Campbell B, Perring P, Hamblin MW, Walker P, Mladenovic L, Andrade R. Serotonergic regulation of membrane potential in developing rat prefrontal cortex: coordinated expression of 5-hydroxytryptamine (5-HT)1A, 5-HT2A, and 5-HT7 receptors. J Neurosci 24: 4807-4817, 2004 https://doi.org/10.1523/JNEUROSCI.5113-03.2004
  4. Bolden-Watson C, Richelson E. Blockade by newly-developed antidepressants of biogenic amine uptake into rat brain synaptosomes. Life Sci 52: 1023-1029, 1993 https://doi.org/10.1016/0024-3205(93)90194-8
  5. Brocher S, Artola A, Singer W. Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res 573: 27-36, 1992 https://doi.org/10.1016/0006-8993(92)90110-U
  6. Choi JS, Choi BH, Ahn HS, Kim MJ, Rhie DJ, Yoon SH, Min do S, Jo YH, Kim MS, Sung KW, Hahn SJ. Mechanism of block by fluoxetine of 5-hydroxytryptamine3 (5-HT3)-mediated currents in NCB-20 neuroblastoma cells. Biochem Pharmacol 66: 2125-2132, 2003 https://doi.org/10.1016/j.bcp.2003.08.012
  7. Dwivedi Y, Agrawal AK, Rizavi HS, Pandey GN. Antidepressants reduce phosphoinositide-specific phospholipase C (PI-PLC) activity and the mRNA and protein expression of selective PLC beta 1 isozyme in rat brain. Neuropharmacology 43: 1269-1279, 2002 https://doi.org/10.1016/S0028-3908(02)00253-8
  8. Dyck RH, Cynader MS. Autoradiographic localization of serotonin receptor subtypes in cat visual cortex: transient regional, laminar, and columnar distributions during postnatal development. J Neurosci 13: 4316-4338, 1993
  9. Edagawa Y, Saito H, Abe K. Endogenous serotonin contributes to a developmental decrease in long-term potentiation in the rat visual cortex. J Neurosci 21: 1532-1537, 2001
  10. Foehring RC, van Brederode JF, Kinney GA, Spain WJ. Serotonergic modulation of supragranular neurons in rat sensorimotor cortex. J Neurosci 22: 8238-8250, 2002
  11. Hahn SJ, Choi JS, Rhie DJ, Oh CS, Jo YH, Kim MS. Inhibition by fluoxetine of voltage-activated ion channels in rat PC12 cells. Eur J Pharmacol 367: 113-118, 1999 https://doi.org/10.1016/S0014-2999(98)00955-8
  12. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, Kash SF. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282: 1504-1508, 1998 https://doi.org/10.1126/science.282.5393.1504
  13. Hoyer D, Martin G. 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 36: 419-428, 1997 https://doi.org/10.1016/S0028-3908(97)00036-1
  14. Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98: 739-755, 1999 https://doi.org/10.1016/S0092-8674(00)81509-3
  15. Jagadeesh SR, Subhash MN. Effect of antidepressants on intracellular Ca2+ mobilization in human frontal cortex. Biol Psychiatry 44: 617-621, 1998 https://doi.org/10.1016/S0006-3223(98)00024-9
  16. Kirkwood A, Rozas C, Kirkwood J, Perez F, Bear MF. Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J Neurosci 19: 1599-1609, 1999
  17. Kojic L, Dyck RH, Gu Q, Douglas RM, Matsubara J, Cynader MS. Columnar distribution of serotonin-dependent plasticity within kitten striate cortex. Proc Natl Acad Sci USA 97: 1841-1844 2000 https://doi.org/10.1073/pnas.97.4.1841
  18. Kojic L, Gu Q, Douglas RM, Cynader MS. Serotonin facilitates synaptic plasticity in kitten visual cortex: an in vitro study. Brain Res Dev Brain Res 101: 299-304, 1997 https://doi.org/10.1016/S0165-3806(97)00083-7
  19. Kojima T, Matsumoto M, Togashi H, Tachibana K, Kemmotsu O, Yoshioka M. Fluvoxamine suppresses the long-term potentiation in the hippocampal CA1 field of anesthetized rats: an effect mediated via 5-HT1A receptors. Brain Res 959: 165-168, 2003 https://doi.org/10.1016/S0006-8993(02)03756-3
  20. Li QH, Nakadate K, Tanaka-Nakadate S, Nakatsuka D, Cui Y, Watanabe Y. Unique expression patterns of 5-HT2A and 5-HT2C receptors in the rat brain during postnatal development: Western blot and immunohistochemical analyses. J Comp Neurol 469: 128-140, 2004 https://doi.org/10.1002/cne.11004
  21. Lu KT, Gean PW. Endogenous serotonin inhibits epileptiform activity in rat hippocampal CA1 neurons via 5-hydroxytryptamine1A receptor activation. Neuroscience 86: 729-737, 1998 https://doi.org/10.1016/S0306-4522(98)00106-7
  22. Masuko T, Suzuki I, Kizawa Y, Kusama-Eguchi K, Watanabe K, Kashiwagi K, Igarashi K, Kusama T. Monoamines directly inhibit N-methyl-d-aspartate receptors expressed in Xenopus oocytes in a voltage-dependent manner. Neurosci Lett 371: 30- 33, 2004 https://doi.org/10.1016/j.neulet.2004.08.030
  23. Mori K, Togashi H, Kojima T, Matsumoto M, Ohashi S, Ueno K, Yoshioka M. Different effects of anxiolytic agents, diazepam and 5-HT(1A) agonist tandospirone, on hippocampal long-term potentiation in vivo. Pharmacol Biochem Behav 69: 367-372, 2001 https://doi.org/10.1016/S0091-3057(01)00546-9
  24. Nierenberg AA, Farabaugh AH, Alpert JE, Gordon J, Worthington JJ, Rosenbaum JF, Fava M. Timing of onset of antidepressant response with fluoxetine treatment. Am J Psychiatry 157: 1423 -1428, 2000 https://doi.org/10.1176/appi.ajp.157.9.1423
  25. Ohashi S, Matsumoto M, Togashi H, Ueno K, Yoshioka M. The serotonergic modulation of synaptic plasticity in the rat hippocampo- medial prefrontal cortex pathway. Neurosci Lett 342: 179-182, 2003 https://doi.org/10.1016/S0304-3940(03)00293-3
  26. Paspalas CD, Papadopoulos GC. Serotoninergic afferents preferentially innervate distinct subclasses of peptidergic interneurons in the rat visual cortex. Brain Res 891: 158-167, 2001 https://doi.org/10.1016/S0006-8993(00)03193-0
  27. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. 3rd ed, Academic Press, San Diego, 1997
  28. Preece MA, Dalley JW, Theobald DE, Robbins TW, Reynolds GP. Region specific changes in forebrain 5-hydroxytryptamine1A and 5-hydroxytryptamine2A receptors in isolation-reared rats: an in vitro autoradiography study. Neuroscience 123: 725-732, 2004 https://doi.org/10.1016/j.neuroscience.2003.10.008
  29. Rae JL, Rich A, Zamudio AC, Candia OA. Effect of Prozac on whole cell ionic currents in lens and corneal epithelia. Am J Physiol 269: C250-256, 1995 https://doi.org/10.1152/ajpcell.1995.269.1.C250
  30. Rocher C, Spedding M, Munoz C, Jay TM. Acute stress-induced changes in hippocampal/prefrontal circuits in rats: effects of antidepressants. Cereb Cortex 14: 224-229, 2004 https://doi.org/10.1093/cercor/bhg122
  31. Roerig B, Nelson DA, Katz LC. Fast synaptic signaling by nicotinic acetylcholine and serotonin 5-HT3 receptors in developing visual cortex. J Neurosci 17: 8353-8362, 1997
  32. Shakesby AC, Anwyl R, Rowan MJ. Overcoming the effects of stress on synaptic plasticity in the intact hippocampus: rapid actions of serotonergic and antidepressant agents. J Neurosci 22: 3638- 3644, 2002
  33. Sheldon PW, Aghajanian GK. Serotonin (5-HT) induces IPSPs in pyramidal layer cells of rat piriform cortex: evidence for the involvement of a 5-HT2-activated interneuron. Brain Res 506: 62-69, 1990 https://doi.org/10.1016/0006-8993(90)91199-Q
  34. Singer W. Development and plasticity of cortical processing architectures. Science 270: 758-764, 1995 https://doi.org/10.1126/science.270.5237.758
  35. Statnick MA, Dailey JW, Jobe PC, Browning RA. Abnormalities in 5-HT1A and 5-HT1B receptor binding in severe-seizure genetically epilepsy-prone rats (GEPR-9s). Neuropharmacology 35: 111-118, 1996 https://doi.org/10.1016/0028-3908(95)00141-7
  36. Staubli U, Otaky N. Serotonin controls the magnitude of LTP induced by theta bursts via an action on NMDA-receptormediated responses. Brain Res 643: 10-16, 1994 https://doi.org/10.1016/0006-8993(94)90003-5
  37. Stewart CA, Reid IC. Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacology 148: 217-223, 2000 https://doi.org/10.1007/s002130050045
  38. Vitalis T, Parnavelas JG. The role of serotonin in early cortical development. Dev Neurosci 25: 245-256, 2003 https://doi.org/10.1159/000072272
  39. Wang SJ, Su CF, Kuo YH. Fluoxetine depresses glutamate exocytosis in the rat cerebrocortical nerve terminals (synaptosomes) via inhibition of P/Q-type Ca2+ channels. Synapse 48: 170-177, 2003 https://doi.org/10.1002/syn.10200
  40. Wong AH, Van Tol HH. Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27: 269-306, 2003 https://doi.org/10.1016/S0149-7634(03)00035-6
  41. Wong DT, Bymaster FP, Engleman EA. Prozac (fluoxetine, Lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: twenty years since its first publication. Life Sci 57: 411-441, 1995 https://doi.org/10.1016/0024-3205(95)00209-O