Content Analyses of Fiber, Protein and Amino Acids of Fully Ripe Fruits of Korea Native Squash, Cucurbita moschata Poir

한국재래종 호박 완숙과의 섬유질, 단백질 및 아미노산 함량 비교분석

  • Youn, Sun-Joo (Biofarmer. Co. Ltd.) ;
  • Jun, Ha-Joon (Division of Horticulture and Landscape Architecture, Daegu University) ;
  • Kang, Sun-Chul (Division of Food, Biological and Chemical Engineering, Daegu University)
  • Published : 2004.12.31

Abstract

We studied active substances like crude cell wall components, crude protein, composing amino acids and free amino acids including orinithine cycle-related amino acids such as asparagine, ornithine and citrullin in fully ripe fruits of Korean native squash, Cucurbita moschata Poir. Crude protein content of 'Jeju 2' was the highest with $2,830\;{\mu}g/g$, while 'Sangju' was the lowest with $1,319\;{\mu}g/g$. Regarding the contents of crude cell wall components, fruit 'Kanghaw' was the highest with 2,961 mg% while 'Namhea' was the lowest with 1,582 mg%. Pectin contents of crude cell wall components were the highest in 'Kanghaw' (2,198 mg%) followed by 'Jeju 2' (2,178 mg%) and 'Jeju l' (1,461 mg%). The main contents of amino acids in squash were glutamic acid, aspartic acid, lysine, leucine and valine, which comprised to be more than 50% of total amino acid contents. Especially, in 'Jeju 2' aspartic acid and threonine were not detected. In fully ripe fruits, a total of 34 kinds of free amino acids were detected including 8 kinds of essential amino acids (histidine, isoleucine, leucine, lysine, phenylalanine, methionine, threonine and valine). More than 50% of the total free amino acids were aspartic acid and asparagine, and also all varieties were detected in ornithine, citrullin, and arginine, which are related to Ornithine cycle. There was a big difference in the contents of arginine in all varieties whereas the contents of ornithine and citrullin were very similar. 'Teaan' 29.34% was 7 times higher than 'Namhea' 4.30% in regards to arginine contents.

한국산 재래종 호박 완숙과의 총세포벽 물질, 펙틴, 총단백질, 단백질을 구성하고 있는 아미노산 및 유리아미노산의 함량을 비교 조사하였다. 과육의 단백질 함량은 ‘제주 2’가 $2,830\;{\mu}g/g$으로 가장 높았고 '상주'는 $1,319\;{\mu}g/g$으로 가장 낮았다. 세포벽물질은 ‘강화’가 2,961 mg%로 가장 높았고, '남해'는 1,582 mg%로 가장 낮았다. 또한 세포벽 물질 내 펙틴의 함량은 ‘강화'(2,198 mg%), '제주 2'(2,178 mg%) 및 ’제주 1'(1,461 mg%)의 순서로 높았다. 또한 세포벽 물질 내 펙틴은 수용성과 불용성 펙틴이 주류를 이루고 있음을 알 수 있었다. 아미노산 함량조성은 품종에 따라 다소 차이는 있지만 glutamic acid, aspartic acid, lysine, leucine 및 valine이 주를 이루어 전체 아미노산 함량의 50% 이상을 차지하였고, 특이하게도 '제주 2'는 aspartic acid와 threonine이 검출되지 않았다. 한편 완숙과 호박의 과육 내 유리 아미노산은 8종의 필수아미노산(histidine, isoleucine, leucine, lysine, phenylalanine, methionine, threonine 및 valine)을 비롯해 총 34종류의 유리아미노산이 검출되었고 aspartic acid와 asparagine의 함량이 전체 유리아미노산 중 50% 이상으로 가장 높았다. 또한 이뇨작용과 관련된 ornithine, citrulline, arginine이 모든 품종에서 검출되었으며 ornithine과 citrulline은 품종간에 큰 차이가 없었으나 arginine은 ‘남해’가 4.3 mg%이었으며, ‘태안’이 29.34 mg%로 품종간에 7배의 큰 차이를 보였다.

Keywords

References

  1. Lumpton, J. R. and Morin, J. L. (1993) Barley bran flour accelerates gastrointestinal transit time. J. Amer. Diet Assoc. 93, 881-885 https://doi.org/10.1016/0002-8223(93)91526-V
  2. Jang, S. M., Lee, J. B., Ahn, H., Kim, J. H., Park, N. Y., Han, C. J. and Jang, K. H. (2002) The effect of pumpkin and medical herb extract supplement on blood composition of the women delivered of a child. Food Ind. Nutr. 7, 45-49
  3. Choi, C. B., Park, Y. K., Kang, Y. H. and Park, M. W. (1998) Effects of pumpkin powder on chemically induced stomach and mammary cancers in Sprague-Dawley rats. J. Korean Soc. Food Sci. Nutr. 27. 973-979
  4. Holmes, F. L. (1980) Hans Krebs and the discovery of the Ornithine cycle. Fed. Proc. 39, 216-225
  5. Chung, H. D. and Youn, S. J. (1998) Chemical composition and quality evaluation of ripe fruit of the Korea native squash (Cucurbita moschata). J. Korean Soc. Hort. Sci. 39, 510-516
  6. Youn, S. J. (1997) Study on the ecological characteristics, fruit quality and genetic relationship of the Cucurbita moschata (Dutch) Poir. using RAPD. Ph.D. Thesis, Yeungnam University, Korea
  7. Rose, J. K. C., Hadafield, K. A., Labavitch, J. M. and Bennett, A. B. (1998) Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol. 177, 345-361
  8. Ben-Arie, R., Sonego, L. and Frenkel, C. (1979) Changes in pectic substances in ripening pears. J. Amer. Soc. Hort. Sci. 104, 500-505
  9. Bitter, T. and Muir, H. M. (1962) A modified uronic acid carbazole reaction. Anal. Biochem. 4, 330-334 https://doi.org/10.1016/0003-2697(62)90095-7
  10. Bradford, M. M. (1976) A rapid sensitive method for the quantitation of microgram of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  11. Spackman, D. H., Stein, W. H. and Moore, S. (1958) Automatic recoding apparatus for use in the chromatography of amino acids. Anal. Chem. 30, 1190-1206 https://doi.org/10.1021/ac60139a006
  12. Siddiquim, I. R. (1989) Studies on vegetables: fiber content and composition of ethanol-insoluble and -soluble residues. J. Agric. Food Chem. 37, 647-650 https://doi.org/10.1021/jf00087a015
  13. Park, Y. K., Cha, H. S., Park, M. W., Kang, Y. H. and Seog, H. M. (1997) Chemical components in different parts of pumpkin. J. Korean Soc. Food Sci. Nutr. 26, 639-646
  14. Cho, G. S. (1997) Chemical compositions of the green and ripened pumpkin (Cucurbita moschata Duch.). Korean J. Food Sci. Technol. 29, 657-662
  15. Lehninger, A. L., Nelson, D, L. and Cox, M. M. (1993) Principles of Biochemistry. (2nd ed.), Worth publishers. USA.