DOI QR코드

DOI QR Code

Recent Advances in Gut Microbiology and Their Possible Contribution to Animal Health and Production - A Review -

  • Kobayashi, Yasuo (Graduate School of Agriculture, Hokkaido University) ;
  • Koike, Satoshi (Graduate School of Agriculture, Hokkaido University) ;
  • Taguchi, Hidenori (Faculty of Bioresources, Mie University) ;
  • Itabashi, Hisao (Faculty of Agriculture, Tokyo University of Agriculture and Technology) ;
  • Kam, Dong K. (School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Ha, Jong K. (School of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • 투고 : 2004.01.03
  • 심사 : 2004.03.05
  • 발행 : 2004.06.01

초록

Although gut microbial functions have been analyzed through cultivation of isolated microbes, molecular analysis without cultivation is becoming a popular approach in recent years. Gene cloning studies have partially revealed the mechanisms involved in fiber digestion of individual microbe. The molecular approach finally made it possible to analyze full genomes of the representative rumen cellulolytic bacteria Fibrobacter and Ruminococcus. The coming database may contain useful information such as regulation of gene expression relating to fiber digestion. Meanwhile, unculturable bacteria are still poorly characterized, even though they are main constituents of gut microbial ecosystem. The molecular analysis is essential to initiating the studies on these unculturable bacteria. The studies dealing with rumen and large intestine are revealing considerable complexity of the microbial ecosystems with many undescribed bacteria. These bacteria are being highlighted as possibly functional members contributing to feed digestion. Manipulation of gut bacteria and gut ecology for improving animal production is still at challenging stage. Bacteria newly introduced in the rumen, whether they are genetically modified or not, suffer from poor survival. In one of these attempts, Butyrivibrio fibrisolvens expressing a foreign dehalogenase was successfully established in sheep rumen to prevent fluoroacetate poisoning. This expands choice of forages in tropics, since many tropic plants are known to contain the toxic fluoroacetate. This example may promise the possible application of molecular breeding of gut bacteria to the host animals with significance in their health and nutrition. When inoculation strategies for such foreign bacteria are considered, it is obvious that we should have more detailed information of the gut microbial ecology.

키워드

참고문헌

  1. Allison, M. J., A. C. Hammond and R. J. Jones. 1990. Detection of ruminal bacteria that degrade toxic dehydroxypyridine compounds produced from mimosine. Appl. Environ. Microbiol. 56:590-594.
  2. Attwood, G. T., R. A. Lockington, G. P. Xue and J. D. Brooker. 1988. Use of a unique gene sequence as a probe to enumerate a strain of Bacteroides ruminicola introduced into the rumen. Appl. Environ. Microbiol. 54:534-539.
  3. Cappa, F., B. Riboli, F. Rossi, M. L. Callegari and P. S. Cocconelli. 1997. Construction of novel Ruminococcus albus strains with improved cellulase activity by cloning of Streptomyces rochei endoglucanase gene. Biotechnol. Lett. 19:1151-1155.
  4. Daly, K., C. S. Stewart, H. J. Flint and S. P. Shirazi-Beechey. 2001. Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS Microbiol. Ecol. 38:141-151.
  5. Daniel, A. S., J. Martin, I. Vanat, T. R. Whitehead and H. J. Flint. 1995. Expression of a cloned cellulase/xylanase gene from Prevotella ruminicola in Bacteroides vulgatus, Bacteroides uniformis and Prevotella ruminicola. J. Appl. Bacteriol. 79:417-424.
  6. Devillard, E., C. J. Newbold, K. P. Scott, E. Forano, R. J. Wallace, J. P. Jouany and H. J. Flint. 1999. A xylanase produced by the rumen anaerobic protozoan Polyplastron multivesiculatum shows close sequence family to family 11 xylanases from gram-positive bacteria. FEMS Microbiol. Lett. 191:145-152.
  7. Forano, E. and H. J. Flint. 2000. Genetically modified organisms: consequences for ruminant health and nutrition. Ann. Zootech. 49:255-271.
  8. Forsberg, C. W., K. J. Cheng and B. A. White. 1997. Polysaccharide degradation in the rumen and large intestine. In: Gastrointestinal Microbiology Vol. 1. (Ed R. I. Mackie and B. A. White). pp. 319-379. International Thomson Publishing, New York.
  9. Gregg, K., C. L. Cooper, D. J. Schaefer, H. Sharpe, C. E. Beard, G. Allen and J. Xu. 1994. Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium. Bio/Technol. 12:1361-1365.
  10. Gregg, K., G. Allen and C. E. Beard. 1996. Genetic manipulation of rumen bacteria: from potential to reality. Aust. J. Agric. Res. 47:247-256.
  11. Gregg, K., B. Hamdolf, K. Henderson, J. Kopecny and C. Wong. 1998. Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning. Appl. Environ. Microbiol. 64:3496-3498.
  12. Ha, J. K., D. K. Kam and H. S. Jeon. 2000. Role of xylan degrading enzymes in fiber digestion in ruminants. Asian-Aust. J. Anim. Sci. 13:149-157.
  13. Jun Hyun, S., J. K. Ha, L. M. Malburg, A. M. V. Gibbins and C. W. Forsberg. 2003. Characteristics of a cluster of xylanases in F. succinogenes S85. Can. J. Microbiol. 49:171-180.
  14. Kam, D. K. 2000. Cloning of xylanase gene from Piromyces communis and vector construction for transformation to anaerobic bacteria. Seoul Natl. Univ. MS thesis.
  15. Karita, S., K. Sakka and K. Ohmiya. 1997. Cellulosomes, cellulase complexes, of anaerobic microbes: their structure models and functions. In: Rumen Microbes and Digestive Physiology in Ruminants (Ed. H. Itabashi, R. Onodera, Y. Sasaki, K. Ushida and H. Yano). pp. 47-57, Japan Sci. Soc. Press, Tokyo/S. Kargel, Basel.
  16. Kim, M. S. 2004. cPCR assay for the measurement of ruminal bacteria count and microbial attachment. Seoul Natl. Univ. MS thesis.
  17. Kobayashi, Y., M. Wakita, R. Sakauchi and S. Hoshino. 1990. Effects of ionophores on rumen microbes and host animal nutrition. In: The Rumen Ecosystem-The Microbial Metabolism and Its Regulation (Ed. S. Hoshino, R. Onodera, H. Minato and H. Itabashi). pp. 179-186, Japan Sci. Soc. Press/Springer-Verlag, Tokyo/Berlin.
  18. Kobayashi, Y., N. Okuda, M. Matsumoto, K. Inoue, M. Wakita and S. Hoshino. 1998. Constitutive expression of a heterologous Eubacterium ruminantium xylanase gene (xynA) in Butyrivibrio fibrisolvens. FEMS Microbiol. Lett. 163:11-17.
  19. Kobayashi, Y. and R. Onodera. 1999. Application of molecular biology to rumen microbes - Review-. Asian-Aust. J. Anim. Sci. 12:77-83.
  20. Kobayashi, Y., R. J. Forster and R. M. Teather. 2000. Development of a competitive polymerase chain reaction assay for the ruminal bacterium Butyrivibrio fibrisolvens OB156 and its use for tracking an OB156-derived recombinant. FEMS Microbiol. Lett. 188:185-190.
  21. Kobayashi, Y., M. Yamada and M. Yamamoto. 2001. Survival of a recombinant rumen bacterium in the rumen of sheep. Anim. Sci. J., 72:344-346.
  22. Kobayashi, Y. and M. Yamamoto. 2002. Factors that limit maintenance of recombinant rumen bacterium in sheep rumen. Anim. Sci. J. 73:131-136.
  23. Kobayashi, Y., H. Taguchi, T. N. Goto, S. Koike and K. Ohmiya. 2003. Expression and export of a Ruminococcus albus cellulase in Butyrivibrio fibrisolvens through the use of an alternative gene promoter and signal sequence. Can. J. Microbiol. 49:375-382.
  24. Kobayashi, Y. 2003. Recombinant rumen bacteria: problems and opportunities. Nutr. Abst. Rev. (Series B), 73:51-59.
  25. Koike, S., Y. Shingu, H. Inaba, M. Kawai, Y. Kobayashi, H. Hata, K. Tanaka and M. Okubo. 2000. Fecal bacteria of Hokkaido native horses as characterized by microscopic enumeration and competitive PCR assays. J. Equine Sci. 11:45-50.
  26. Koike, S. and Y. Kobayashi. 2001. Development and use of competitive PCR assays for the ruminal cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiology Letters, 204:361-366. 2001
  27. Koike, S., J. Pan, Y. Kobayashi and K. Tanaka. 2003a. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR. J. Dairy Sci. 86:1429-1435.
  28. Koike, S., S. Yoshitani, Y. Kobayashi, K. Tanaka. 2003b. Phylogenetic analysis of fiber-associated rumen bacterial community and PCR detection of uncultured bacteria. FEMS Microbiol. Lett. 229:23-30.
  29. Krause, D. O., R. J. Bunch, N. D. Dalrymple, K. S. Gobius, W. J. Smith, X. P. Xue and C. S. McSweeney. 2001. Expression of a modified Neocallimastix patriciarum xylanase in Butyrivibrio fibrisolvens digests more fibre but can not effectively compete with highly fibrolytic bacteria in the rumen. J. Appl. Microbiol. 90:388-396.
  30. Lin, C. and D. A.Stahl. 1995. Taxon-specific probes for the cellulolytic genus Fibrobacter reveal abundant and novel equine-associated populations. Appl. Environ. Microbiol. 61:1348-1351.
  31. McSweeney, C. S., B. P. Dalrymple, K. S. Gobius, P. M. Kennedy, D. O. Krause, R. I. Mackie and G. P. Xue. 1999. The application of rumen biotechnology to improve the nutritive value of fibrous feedstuffs: pre- and post-ingestion. Livestock Prod. Sci. 59:265-283.
  32. McSweeney, C. S., B. Parmer, D. M. McNeil and D. O. Krause. 2001. Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Technol. 91:83-93.
  33. Minato, H., E. Miyagawa and T. Suto. 1990. Techniques for analysis of rumen microbial ecosystems. In: The Rumen Microbial Ecosystem- The Microbial Metabolism and Its Regulation (Ed. S. Hoshino, R. Onodera, H. Minato and H.Itabashi). pp. 3-12. Japan Sci. Soc. Press/Springer-Verlag, Tokyo/Berlin.
  34. Miyazaki, K., H. Miyamoto, D. K. Mercer, T. Hirase, J. C. Martin, Y.Kojima and H. J. Flint. 2003. Involvement of the multidomain regulatory protein XynR in positive control of xylanase gene expression in the ruminal anaerobe Prevotella bryantii B14. J. Bacteriol. 185:2219-2226.
  35. Osawa, R. 1990. Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from feces of koalas. Appl. Environ. Microbiol. 56:829-831.
  36. Reilly, K. and G. T. Attwood. 1998. Detection of Clostridium proteoclasticum and closely related strains in the rumen by competitive PCR. Appl. Environ. Microbiol. 64:907-913.
  37. Rasmussen, M. A., B. A. White and R. B. Hespell. 1989. Improved assay for quantitating adherence of ruminal bacteria to cellulose. Appl. Environ. Microbiol. 55:2089-2091.
  38. Santra, A. and S. A. Karim. 2003. Rumen manipulation to improve animal productivity. Asian-Aust. J. Anim. Sci. 16:748-763.
  39. Singh, B., T. J. Bhat and B. Singh. 2001. Exploiting gastrointestinal microbes for livestock and industrial development -Review-. Asian-Aust. J. Anim. Sci. 14:567-586.
  40. Tajima, K., R. I. Aminov, T. Nagamine, K. Ogata, M. Nakamura, H. Matsui and Y. Benno. 1999. Rumen bacterial diversity as determined by sequence analysis of 16S rDNA libraries.FEMS Micribiol. Ecol. 29:159-169.
  41. Tajima, K., S. Arai, K. Ogata, T. Nagamine, H. Matsui, M. Nakamura, R. I. Aminov and Y. Benno. 2000. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe, 6:273-284.
  42. Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 67:2766-2774.
  43. Takenaka, A., C. G. D Silva, H. Kudo, H. Itabashi and K. J. Cheng. 1999. Molecular cloning, expression and characterization of an endo-$\beta$1,4-glucanase cDNA from Epidinium caudatum. J. Gen. Appl. Microbiol. 45:57-61.
  44. Teather, R. M., M. A. Hefford and R. J. Forster. 1997. Genetics of Rumen bacteria. In: The Rumen Microbial Ecosystem (2nd ed.) (Ed. P. N. Hobson and C. S. Stewart). pp. 427-466. Blackie Academic & Professional, London, UK.
  45. Teather, R. M. and R. J. Forster. 1998. Manipulating the rumen microflora with bacteriocins to improve ruminant production. Can. J. Anim. Sci. 78:57-69.
  46. Varel, V. H., J. T. Yen and K. K. Kreikmeiser. 1995. Addition of cellulolytic clostridia to the bovine rumen and pig intestinal tract. Appl. Environ. Mivrobiol. 61:1116-1119.
  47. Wallace, R. J. 1992. Rumen microbiology, biotechnology and ruminant nutrition: the application of research findings to a complex microbial ecosystem. FEMS Microbiol. Lett. 100:529-534.
  48. Weimer, P. J., G. C. Waghorn, C. L. Odt and D. R. Mertens. 1999. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows. J. Dairy Sci. 82:122-134.
  49. White, B. A. and M. Morrison. 2001. Genomic and proteomic analysis of microbial function in the gastrointestinal tract of ruminants -Review-. Asian-Aust. J. Anim. Sci. 14:880-884.
  50. Whitford, M. F., R. J. Forster, C. E. Beard, J. Gong and R. M. Teather. 1998. Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe, 4:153-163.
  51. Whitehead, T. R. and H. J. Flint. 1995. Heterologous expression of an endoglucanase gene (endA) from the ruminal anaerobe Ruminococcus flavefaciens 17 in Streptococcus bovis and Streptococcus sanguis.

피인용 문헌

  1. Inclusion of novel bacteria in rumen microbiology: Need for basic and applied science vol.77, pp.4, 2006, https://doi.org/10.1111/j.1740-0929.2006.00362.x
  2. Quantification by real-time PCR of cellulolytic bacteria in the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates: effect of a yeast additive vol.103, pp.6, 2007, https://doi.org/10.1111/j.1365-2672.2007.03517.x
  3. Advances in microbial ecosystem concepts and their consequences for ruminant agriculture vol.2, pp.05, 2008, https://doi.org/10.1017/S1751731108002164
  4. Rapid changes in key ruminal microbial populations during the induction of and recovery from diet-induced milk fat depression in dairy cows vol.114, pp.03, 2015, https://doi.org/10.1017/S0007114515001865
  5. pH and Colour Characteristics of Carcasses of Broilers Fed with Dietary Probiotics and Slaughtered at Different Ages vol.19, pp.4, 2006, https://doi.org/10.5713/ajas.2006.605
  6. Low Ruminal pH Reduces Dietary Fiber Digestion via Reduced Microbial Attachment vol.20, pp.2, 2004, https://doi.org/10.5713/ajas.2007.200