DOI QR코드

DOI QR Code

Genetic Parameter Estimates for Backfat Thickness at Three Different Sites and Growth Rate in Swine

  • Kim, J.I. (Korea Animal Improvement Association) ;
  • Sohn, Y.G. (National Livestock Research Institute, RDA) ;
  • Jung, J.H. (School of Agricultural Biotechnology, Seoul National University) ;
  • Park, Y.I. (School of Agricultural Biotechnology, Seoul National University)
  • Received : 2003.06.04
  • Accepted : 2003.12.03
  • Published : 2004.03.01

Abstract

The purpose of this study was to estimate the genetic parameters for backfat thickness at shoulder, mid back and loin and days to 90 kg using a derivative-free REML procedure. Data were collected from 6,146 boars and gilts of purebred Durocs, Landraces and Large Whites performance tested at breeding farms of National Agricultural Cooperatives Federation in Korea from 1998 to 2001. Estimated heritability for backfat measurements at shoulder, mid-back and loin and an average of those backfat measurements were 0.14, 0.32, 0.22 and 0.25 in Durocs, 0.34, 0.50, 0.42 and 0.46 in Landraces and 0.33, 0.52, 0.43 and 0.49 in Large Whites. Heritabilities of backfat measurements estimated were hightest in mid-back and lowest at shoulder. Phenotypic variances of backfat measurements estimated were largest at shoulder and smallest at mid-back. Estimated heritabilities for days to 90 kg were 0.37 in Durocs, 0.42 in Landraces and 0.54 in Large Whites. Genetic correlations among backfat measurements at shoulder, mid-back and loin and an average of those backfat measurements estimated were positive and very high. Genetic correlations of days to 90 kg with the backfat measurements estimated were _0.19 ~ _0.30 in Durocs, _0.04 ~ _0.17 in Landraces and _0.10 ~ _0.13 in Large Whites.

Keywords

References

  1. Bereskin, B. 1986. A genetic analysis of feed conversion efficiency and associated traits in swine. J. Anim. Sci. 62:910-917.
  2. Bereskin, B. 1987. Genetic and phenotypic parameters for pig growth and body composition estimated by intraclass correlation and parent-offspring regression. J. Anim. Sci. 64:1619-1629.
  3. Boldman, K. G., L. A. Kriese, L. D. Van Vleck, C. P. Van Tassell and S. D. Kachman. 1995. A manual for use of MTDFREML. A set of programs to obtain estimate of variances and covariances. USDA, ARS.
  4. Bryner, S. M., J. W. Mabry, J. K. Bertrand, L. L. Benyshek and L. A. Kriese. 1992. Estimation of direct and maternal heritability and genetic correlation for backfat and growth rate in swine using data from centrally tested Yorkshire boars. J. Anim. Sci. 70:1755-1759.
  5. Cameron, N. D. and M. K. Curran. 1995. Genetic with feeding regime interaction in pigs divergently selected for components of efficient lean growth rate. Anim. Sci. 61:123-132.
  6. Chens, P., T. J. Baas, J. W. Marby, J. C. M. Dekkers and K. J. Koehler. 2002. Genetic parameters and trends for lean growth rate and its components in U. S. Yorkshire, Duroc, Hampshire, and Landrace pigs. J. Anim. Sci. 80:2062-2070.
  7. Christenson, L. L. 1994. Swine genetic evaluation programs and factors influencing pork quality in the USA. Proc., 13th Swine Seminar. Korea Association of Pig Research and Industry.
  8. Culbertson, M. S., J. W. Marby, I. Misztal, N. Gengler, J. K. Bertrand and L. Varona. 1998. Estimation of dominance variance in purebred Yorkshire swine. J. Anim. Sci. 76:448-451.
  9. Hicks, C., M. Satoh, K. Ishii and S. Kuroki. 1999. Effect of sex on estimates of genetic parameters for daily gain and ultrasonic backfat thickness in swine. Asian-Aust. J. Anim. Sci. 12:677-681.
  10. Hutchens, L. K., R. L. Hintz and R. K. Johnson. 1981. Genetic and phenotypic relationships between pubertal and growth characteristics of gilts. J. Anim. Sci. 53:946-951.
  11. Johnson, Z. B., J. J. Chewning and R. A. Nugent, III. 1999. Genetic parameters for production traits and measures of residual feed intake in Large White swine. J. Anim. Sci. 77:1679-1685.
  12. Keele, J. W., R. K. Johnson, L. D. Young and T. E. Long. 1988. Comparison of methods of predicting breeding values of swine. J. Anim. Sci. 66:3040-3048.
  13. Kennedy, B. W., K. Johnson and G. F. Hudson. 1985. Heritabilities and genetic correlations for backfat and age at 90 kg in performance-tested pigs. J. Anim. Sci. 61:78-82.
  14. Kim, S. D., H. C. Park, K. S. Seo, S. H. Kim and Y. I. Park. 1996. Comparison of multiple with single trait animal models in estimation of breeding values of economic traits of swine. Korea J. Anim. Sci. 38:341-346.
  15. Li, X. and B. W. Kennedy. 1994. Genetic parameters for growth rate and backfat in Canadian Yorkshire, Landrace, Duroc and Hampshire pigs. J. Anim. Sci. 72:1450-1454.
  16. Lo, L. L., D. G. McLaren, F. K. McKeith, R. L. Fernando and J. Novakofski. 1992. Genetic analyses of growth, real-time ultrasound, carcass, and pork quality traits in Duroc and Landrace pigs. II. Heritabilities and correlations. J. Anim. Sci. 70:2387-2396.
  17. McLaren, D. G., D. S. Buchanan and J. E. Williams. 1987. Economic evaluation of alternative crossbreeding systems involving four breeds of swine. II. System efficiency. J. Anim. Sci. 64:83-98.
  18. McPhee, C. P., P. J. Brennan and F. Duncalfe. 1979. Genetic and phenotypic parameters of Australian Large White and Landrace boars performance tested when offered feed anlibitum. Anim. Prod. 28:79-85.
  19. Miller, H. W., M. F. Cain and H. D. Chapman. 1979. Performance of purebred and crossbred pigs. J. Anim. Sci. 49:943-949.
  20. Mrode, R. A. and B. W. Kennedy. 1993. Genetic variation in measures of food efficiency in pigs and their genetic relationships with growth rate and backfat. Anim. Prod 56:225-232.
  21. NSIF. 1987. Guidelines for uniform swine improvement programs. National Swine Improvement Federation.
  22. Park, Y. I. and S. S. Lee. 1995. Effects of breed and environmental factors on performance traits of boars at the Korea Swine Testing Station. Kor. J. Anim. Sci. 37:502-508
  23. Song, K. L., B. W. Kim, S. D. Kim, C. S. Choi, M. J. Kim and J. K. Lee. 2002. Estimation of genetic parameters for economic traits in Yorkshire. J. Anim. Sci. & Technol. 44:499-506.
  24. Swinger, L. A., G. A. Isler and W. A. Harvey. 1979. Postweaning genetic parameters and indexes for swine. J. Anim. Sci. 48:1096-1100.
  25. Van Diepen, T. A. and B. W. Kennedy. 1989. Genetic correlations between test station and on-farm performance for growth rate and backfat in pigs. J. Anim. Sci. 67:1425-1431.
  26. Young, L. D., R. K. Johnson and I. T. Omtvedt and L. E. Walters. 1976. Postweaning performance and carcass merit of purebred and two-breed cross pigs. J. Anim. Sci. 4:1124-1132.

Cited by

  1. Genetic Parameters of Pre-adjusted Body Weight Growth and Ultrasound Measures of Body Tissue Development in Three Seedstock Pig Breed Populations in Korea vol.28, pp.12, 2015, https://doi.org/10.5713/ajas.14.0971
  2. Efficacy of dietary supplementation of fatty acid compound on performance and production in finishing pigs vol.49, pp.6, 2017, https://doi.org/10.1007/s11250-017-1326-4
  3. Effects of protected omega-3 fatty acid derived from linseed oil and vitamin E on growth performance, apparent digestibility, blood characteristics and meat quality of finishing pigs vol.57, pp.6, 2017, https://doi.org/10.1071/AN15641
  4. Vitamin E and omega-3 fatty acids independently attenuate plasma concentrations of proinflammatory cytokines and prostaglandin E2 in Escherichia coli lipopolysaccharide-challenged growing–finishing pigs1 vol.93, pp.6, 2015, https://doi.org/10.2527/jas.2014-8330
  5. Genetic parameters and trends for production traits and their relationship with litter traits in Landrace and Yorkshire pigs vol.89, pp.10, 2018, https://doi.org/10.1111/asj.13090
  6. Effect of supplementation of sodium stearoyl-2-lactylate as fat emulsifier in low-density diet on growth performance, backfat thickness, lean muscle percentage, and meat quality in finishing pigs vol.99, pp.1, 2019, https://doi.org/10.1139/cjas-2017-0206
  7. Genetic Parameters and Responses in Growth and Body Composition Traits of Pigs Measured under Group Housing and Ad libitum Feeding from Lines Selected for Growth Rate on a Fixed Ration vol.18, pp.8, 2004, https://doi.org/10.5713/ajas.2005.1075
  8. Genetic Parameter Estimation of Carcass Traits of Duroc Predicted Using Ultrasound Scanning Modes vol.19, pp.10, 2004, https://doi.org/10.5713/ajas.2006.1379
  9. Estimates of variance components and heritability using different animal models for growth, backfat, litter size, and healthy birth ratio in Large White pigs vol.100, pp.2, 2004, https://doi.org/10.1139/cjas-2019-0136
  10. Genetic Analysis of Major Production and Reproduction Traits of Korean Duroc, Landrace and Yorkshire Pigs vol.11, pp.5, 2004, https://doi.org/10.3390/ani11051321
  11. Effect of microencapsulated organic acids on growth performance, nutrient digestibility, blood profile, fecal gas emission, fecal microbial, and meat-carcass grade quality of growing-finishing pigs vol.252, pp.None, 2021, https://doi.org/10.1016/j.livsci.2021.104658
  12. Effect of increasing levels of threonine relative to lysine on the performance and meat quality of finishing pigs vol.34, pp.12, 2004, https://doi.org/10.5713/ab.21.0078