DOI QR코드

DOI QR Code

Magnetoresistance Characteristics of Magnetic Tunnel Junctions Consisting of Amorphous CoNbZr Alloys for Under and Capping Layers

  • Chun, Byong Sun (Division of Materials Science and Engineering, Korea University) ;
  • Lee, Seong-Rae (Division of Materials Science and Engineering, Korea University) ;
  • Kim, Young Keun (Division of Materials Science and Engineering, Korea University)
  • Published : 2004.03.01

Abstract

Magnetic tunnel junctions (MTJs) comprising amorphous CoNbZr layers have been investigated. $Co_{85.5}Nb_8Zr_{6.5}$(in at. %) layers were employed to substitute the traditionally used Ta layers with an emphasis given on under-standing underlayer effect. The typical junction structure was $SiO_2/CoNbZr$ or Ta 2/CoFe 8/IrMn 7.5/CoFe 3/Al 1.6 + oxidation/CoFe 3/CoNbZr or Ta 2 (nm). For both as-deposited state and after annealing, the CoNbZr-underlayered structure showed superior surface smoothness up to the tunnel barrier than Ta-underlayerd one (rms roughness of 0.16 vs. 0.34 nm). CoNbZr-based MTJs was proven beneficial for increasing thermal stability and increasing $V_h$ (the bias voltage where MR ratio becomes half) characteristics than Ta-based MTJs. This is because the CoNbZr-based junctions offer smoother interface structure than the Ta-based one.

Keywords

References

  1. Phys. Rev. Lett. v.74 J.S.Moodera;L.R.Kinder;T.M.Wong;R.Meservey https://doi.org/10.1103/PhysRevLett.74.3273
  2. J. Appl. Phys. v.81 W.J.Gallagher;S.S.P.Parkin;Yu Lu;X.P.Bian;A.Marley;K.P.Roche;R.A.altman;S.A.rishton;C.Jahnes;T.M.Shaw;Gang Xiao https://doi.org/10.1063/1.364744
  3. Appl. Phys. Lett. v.76 J.J.Sun;K.Shimazawa;N.Kasahara;K.Sato;S.Saruki;T.Kagami;O.Redon;S.Araki;H.Morita;M.Matsuzaki https://doi.org/10.1063/1.126364
  4. Phys. Rev. B v.39 J.C.Slonczewski https://doi.org/10.1103/PhysRevB.39.6995
  5. J. of Magn. Magn. Mater. v.233 E.H.Kim;Y.K.Kim;S.R.Lee https://doi.org/10.1016/S0304-8853(01)00354-7
  6. J. Appl. Phys. v.91 H.G.Cho;Y.K.Kim;S.R.Lee https://doi.org/10.1063/1.1447298
  7. J. Appl. Phys. v.85 S.S.P.Parkin;K.P.roche;M.G.Samant;P.M.rice;R.B.Beyers;R.E.Scheuerlein;E.J.O'Sullivan;S.L.Brown;J.Bucchigano;D.W.Abraham;Y.Lu;M.Rooks;P.L.Trouilloud;R.A.wanner;W.J.gallagher https://doi.org/10.1063/1.369932
  8. J. Appl. Phys. v.76 S.Cardoso;R.Ferreira;P.P.Freitas;P.Wei;J.C.Soares
  9. J. Appl. Phys. v.89 T.Hagler;R.Kinder;G.Bayreuther https://doi.org/10.1063/1.1359229
  10. J. Magn. Magn. Mater. v.200 J.S.Moodera;G.Mathon https://doi.org/10.1016/S0304-8853(99)00515-6
  11. Phys. Rev. Lett. v.79 S.Zhang;P.M.Levy;A.C.Marley;S.S.P.Parkin https://doi.org/10.1103/PhysRevLett.79.3744

Cited by

  1. Effect of Interface Roughness on Magnetoresistance and Magnetization Switching in Double-Barrier Magnetic Tunnel Junction vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018586
  2. Morphology and the magnetic and conducting properties of heterogeneous layered magnetic structures [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]36 vol.118, pp.3, 2014, https://doi.org/10.1134/S1063776114020083