Synergistic Solvent Extraction of Manganese(II) by using Cupferron and Tetrabutylammonium ion

Cupferron과 Tetrabutylammonium ion을 이용한 Mn(II)의 상승용매 추출에 관한 연구

  • In, Gyo (Department of Advanced Material Chemistry, Korea University) ;
  • So, Jin-Hwan (Anti-rusting & Coating Technology Research Team, Institute of Technology Research, Buhmwoo, Ltd.) ;
  • Choi, Jong-Moon (Department of Environmental Engineering, Dong-Hae University) ;
  • Kim, Young-Sang (Department of Advanced Material Chemistry, Korea University)
  • Received : 2003.10.08
  • Accepted : 2003.12.24
  • Published : 2004.02.25

Abstract

The synergistic solvent extraction of Mn(II) by N-nitroso-N-phenylhydroxylamineammonium salt (cupferron) and tetrabutylammonium ion ($TBA^+$) has been studied. In the presence of $TBA^+$, over 95% Mn(II) was extracted from an aqueous solution into chloroform by the cupferron in the pH range of 4 to 10. But a part of Mn(II) was extracted with only cupferron. The ternary complex of Mn(II) was more efficiently extracted into $CH_2Cl_2$ and $CHCl_3$ than other nonpolar solvents. The extracted Mn(II) was determined in the back-extracted $HNO_3$ solution by GF-AAS. This fixed procedure was applied to the determination of trace Mn(II) in tap water samples of pH 5.0. The detection limit equivalent to 3 times standard deviation of the background absorption was 0.37 ng/mL and Mn(II) was determined with the range of 0.4 to 1.01 ng/mL in our laboratory's tap water. And the recovery was 94 to 107% in samples in which 2.0 ng/mL Mn(II) was spiked. The interferences of common concomitant elements such as Cu(II), Ca(II), Fe(III) and so on were not shown up to $10{\sim}20{\mu}g/mL$. From these results, this procedure could be concluded to be applied for the determination of trace Mn(II) in other environmental water samples.

N-nitroso-N-phenylhydroxylamineammonium salt(cupferron)과 tetrabutylammonium ion ($TBA^+$)을 사용하여 수용액 중 미량 Mn(II)을 상승 용매 추출하는 법에 대해서 연구하였다. $TBA^+$가 존재할 때 cupferron으로 수용액 중의 Mn(II)을 추출하면 용액의 pH 4-10 범위에서 95% 이상이 추출되지만 $TBA^+$가 존재하지 않으면 거의 추출되지 않았다. 이런 조건에서 Mn(II)의 추출은 $CH_2Cl_2$$CHCl_3$와 같은 유기용매를 사용 할 때가 다른 비극성 용매를 사용할 때 보다 현저히 잘 추출되었으므로 여기서는 chloroform을 사용하였다. 그리고 수용액의 pH는 5로 조절하였다. 실제시료 중 존재하는 극미량의 Mn(II)을 정량하기 위해서는 chloroform에 추출된 Mn(II)을 다시 0.1 mol/L $HNO_3$용액에 역 추출하여 GF-AAS로 Mn(II)의 흡광도를 측정하였다. 본 방법으로 얻은 Mn(II)의 검출한계는 0.37 ng/mL이었고, 이 방법을 응용하여 실험실 수돗물 중 Mn(II)을 정량한 결과는 0.4-1.01 ng/mL로 얻어졌다. 이 시료에 일정량의 Mn(II)용액을 첨가하여 얻은 회수율은 94-107%이었다. 그리고 Cu(II), Ca(II), Fe(III) 등 공존하는 다른 원소는 10 내지 $20{\mu}g/mL$까지 Mn(II) 정량에 방해를 하지 않았다. 이로서 본 방법이 극미량 Mn(II)의 새로운 분석법으로 사용될 수 있을 것으로 생각된다.

Keywords

References

  1. N. N. Greenwood and A. Earnshaw, 'Chemistry of the element' 1st Ed., 1211-1213, Pergamom Press Inc., USA., 1984
  2. Susan Budavari 'THE MERCK INDEX' 11th Ed., 899, MERCK & CO., INC., USA., 1989
  3. R. C. Calkins, Applied Spectroscopy, 20(3), 146-149(1966)
  4. G. P. Klinkhammer, Anal. Chem., 52(1), 117-120(1980)
  5. G. R Carnrick, W. Salvin, and D. C. Manning, Anal. Chem., 53(12), 1866-1872(1981)
  6. F. J. Feldman, R. B. Bosshart and G. D. Christian, Anal. Chem., 39(10), 1175-1177(1967)
  7. M. A. Taher, Anal. Sci., 17, 969-973(2001)
  8. J. M. Mcarthur, Anal. Chim. Acta, 93, 77-83(1977)
  9. D. A. Segar and J. G. Gonzalez, Anal. Chim. Acta, 58, 7-14(1972)
  10. T. Uchida, I. Kojima and C. Iida, Anal. Chim. Acta, 116, 205-210(1980) https://doi.org/10.1016/S0003-2670(01)84334-8
  11. G. H. Jeffery, J. Bassett, J. Mendhm and R. C. Denny, 'Vogel's Textbook of Quantitative Chemical Analysis' 5th Ed., 170, Longman, England, U.K., 1989
  12. K. Ueno, T. Imamura and K. L. Cheng, 'Handbook of Organic Analytical Reagents' 2nd Ed, 87-92, CRC Press Inc., USA., 1992
  13. Y. Takazawa, H. Itabashi and H. Kawamoto, Anal. Sci., 12, 985-988(1996)
  14. Y.-S. Kim, Y.-S. Choi, and G. In, Bull. Korean Chem. Soc. 21(1), 137-139(2000)
  15. Y.-S. Kim, G. In, J.-M. Choi and C.-W. Lee, Bull. Korean Chem. Soc. 21(9), 855-859(2000)
  16. J. Stary, Anal. Chim. Acta, 28, 132-149(1963)