Induction of Cdk Inhibitor p21 and Inhibition of hTERT Expression by the Aqueous Extract of Wikyung-tang in Human Lung Carcinoma Cells

인체폐암세포의 성장에 미치는 위경장의 영향에 관한 연구

  • Choi Hae-Yun (Pohang Oriental Hospital of Daegu Haany University, Dongeui University College of Oriental Medicine and Research Institute of Oriental Medicine) ;
  • Park Cheol (Department of Biochemistry, Dongeui University College of Oriental Medicine and Research Institute of Oriental Medicine) ;
  • Choi Yung Hyun (Department of Biochemistry, Dongeui University College of Oriental Medicine and Research Institute of Oriental Medicine) ;
  • Park Dong Il (Department of Internal Medicine, Dongeui University College of Oriental Medicine and Research Institute of Oriental Medicine)
  • 최해윤 (대구한의대학교 포항한방병원, 동의대학교 한의과대학) ;
  • 박철 (동의대학교 한의과대학 생화학교실 및 한의학연구소) ;
  • 최영현 (동의대학교 한의과대학 생화학교실 및 한의학연구소) ;
  • 박동일 (동의대학교 한의과대학 내과학교실)
  • Published : 2004.04.01

Abstract

In the present study, we investigated the anti-proliferative effects of aqueous extract of Wikyung-tang(WKT) on the growth of human lung carcinoma cell line A549. WKT treatment declined the cell viability and proliferation of A549 cells in a concentration-dependent manner. The anti-proliferative effects by WKT treatment in A549 cells was associated with morphological changes such as membrane shrinking and cell rounding up. WKT treatment induced an inhibition and/or degradation of apoptotic target proteins such poly(ADP-ribose) polymerase (PARP) and phospholipase C-γ1 (PLC-γ1). WKT treatment did not affect the levels of other Bcl-2 family gene products, such as Bcl-2, Bax and Bad. Western blot analysis and RT-PCT data revealed that the levels of tumor suppressor p53 and cyclin-dependent kinase inhibitor p21 were induced by WKT treatment in A549 cells. Additionally, WKT treatment induced the down-regulation of telomerase reverse transcriptase mRNA (hTERT) expression of A549 cells, however, the levels of other telomere-regulatory gene products were not affected. Taken together, these findings suggest that WKT-induced inhibition of human lung cancer cell proliferation is associated with the induction of apoptotic cell death via regulation of several major growth regulatory gene products and WKT may have therapeutic potential in human lung cancer.

Keywords

References

  1. Cell Biol. Int. v.17 Multiple pathways to apoptosis Evans, V.G. https://doi.org/10.1006/cbir.1993.1087
  2. Am. J. Pathol v.136 Apoptosis. The role of the endonuclease. Arends, M.J.;Morris, R.G.;Wyllie, A.H.
  3. Science v.263 Premature p34cdc2 activation required for apoptosis. Shi. L.;Nishioka, W.K.;Th'ng, J.;Bradbury, E.M.;Litchfield, D.W.;Greenberg, A.H.
  4. Oncogene v.9 Induction of bax by genotoxic stress in human cells correlates with normal p53 status and apoptosis Zhan, Q.;Fan, S.;Bae, I.;Guillouf, C.;Liebermann, D.A.;OConnor, P.M.;Fornace, A.J., Jr
  5. Cell. Mol. Biol. Res. v.40 Apoptosis and the cell cycle Chiarugi, V.;Magnelli, L.;Basi, G.
  6. Cancer Res v.54 WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis El-Deiry, W.S.;Harper, J.W.;O'Connor, P.M.;Velculescu, V.E.;Canman, C.E.;Jackman, J.;Pietenpol, J.A.;Burrell, M.;Hill, D.E.;Wang, Y.;Wiman, K.G.;Mercer, W.E.;Kastan, M.B.;Kohn, K.W.;Elledge, S.J.;Kinzler, K.W.;Vogelstain, B.
  7. Cell v.80 Tumor suppressor p53 is a direct transcriptional activator of the human bax gene Miyashita, T.;Reed, J.C. https://doi.org/10.1016/0092-8674(95)90412-3
  8. Kor. J. Life Sci. v.11 Significance of cell cycle and checkpoint control. Choi, Y. H. and Choi, H. J.
  9. Cancer Res. v.60 The Pezcoller lecture: cancer cell cycles revisited. Sherr, C.J.
  10. Cell v.81 The retinoblastoma protein and cell cycle control. Weinberg, R.A. https://doi.org/10.1016/0092-8674(95)90385-2
  11. Mol. Cell. Biol. v.14 D-type cyclin-dependent kinase activity in mammalian cells Matsushime, H.;Quelle, D.E.;Shurtleff, S.A.;Shibuya, M.;Sherr, C.J.;Kato, J.Y https://doi.org/10.1128/MCB.14.3.2066
  12. Mol. Cell. Biol. v.14 Identification of G1 kinase activity for cdk6, a novel cyclin D partner. Meyerson, M.;Harlow, E. https://doi.org/10.1128/MCB.14.3.2077
  13. Science v.257 Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle Koff, A.;Giordano, A.;Desai, D.;Yamashita, K.;Harper, J.W.;Elledge, S.;Nishimoto, T.;Morgan, D.O.;Franza, B.R.;Roberts, J.M. https://doi.org/10.1126/science.1388288
  14. Science v.259 Cyclin-dependent regulation of G1 in mammalian fibroblasts Ohtsubo, M.;Roberts, J.M. https://doi.org/10.1126/science.8384376
  15. Cell v.73 Mammalian G1 cyclins. Sherr, C.J.
  16. Cell v.67 Cyclin A is required for the onset of DNA replication in mammalian fibroblasts Girard, F.;Strausfeld, U.;Fernandez, A.;Lamb, N.J. https://doi.org/10.1016/0092-8674(91)90293-8
  17. Science v.262 A link between cyclin A expression and adhesion- dependent cell cycle progression Guadagno, T.M.;Ohtsubo, M.;Roberts, J.M.;Assoian, R.K. https://doi.org/10.1126/science.8248807
  18. Nature v.354 Role for cyclin A in the dependence of mitosis on completion of DNA replication Walker, D.H.;Maller, J.L. https://doi.org/10.1038/354314a0
  19. EMBO J. v.15 The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase Brandeis, M.;Hunt, T.
  20. Curr. Opin. Cell Biol. v.6 Cdk inhibitors: on the threshold of checkpoints and development Elledge, S.J.;Harper, J.W. https://doi.org/10.1016/0955-0674(94)90055-8
  21. Cell v.75 The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases Harper, J.W.;Adami, G.R.;Wei, N.;Keyomarsi, K.;Elledge, S.J. https://doi.org/10.1016/0092-8674(93)90499-G
  22. Nature v.366 Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit Gu, Y.;Turck, C.W.;Morgan, D.O. https://doi.org/10.1038/366707a0
  23. Nature v.366 p21 is a universal inhibitor of cyclin kinases Xiong, Y.;Hannon, G.;Zhang, H.;Casso, D.;Kobayashi, R.;Beach, D. https://doi.org/10.1038/366701a0
  24. Oncogene v.21 Complex regulatory mechanisms of telomerase activity in normal and cancer cells: How can we apply them for cancer therapy Kyo, S.;Inoue, M. https://doi.org/10.1038/sj.onc.1205163
  25. Gene v.269 Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT) Poole, J. C.;Andrews, L. G. and Tollefsbol, T. O. https://doi.org/10.1016/S0378-1119(01)00440-1
  26. 2001년 사망원인통계결과 통계청
  27. 東醫肺系內科學
  28. 外臺秘要 王燾
  29. 備急千金要方 孫思邈
  30. 동의병리학회지 v.10 葦莖湯·加味葦莖湯의 A549에 대한 세포독성과 S-180에 대한 항암효과 박경식;박정휘;김동희;김성훈
  31. 方劑學 김상찬;김선희;노승현;박선동;변승희;서부일;서영배;이상인;이강희;주영승;최호영
  32. J. Cell. Biochem. Suppl. v.24 Evaluation of in vitro chemosensitivity using human lung cancer cell lines Kratzke, R. A. and Kramer, B. S.
  33. J. Ethnopharmacol. v.47 Ayurvedic herbal drugs with possible cytostatic activity. Smit, H.F.;Woerdenbag, H.J.;Singh, R.H.;Meulenbeld, G.J.;Labadie, R.P.;Zwaving, J.H. https://doi.org/10.1016/0378-8741(95)01255-C
  34. Cell v.81 Yama/CPP32 , a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase Tewari, M.;Quan, L.T.;O'Rourke, K.;Desnoyers, S.;Zeng, Z.;Beidler, D.R.;Poirier, G.G.;Salvesen, G.S.;Dixit, V.M. https://doi.org/10.1016/0092-8674(95)90541-3
  35. Cancer Res. v.53 Specific proteolytic cleavage of poly (ADP-ribose) polymerase: an early marker of chemotherapy- induced apoptosis Kaufmann, S.H.;Desnoyers, S.;Ottaviano, Y.;Davidson, N.E.;Poirier, G.G.
  36. Nature v.371 Cleavage of poly ADP-ribose polymerase by a proteinase with properties like ICE Lazebnik, Y.A.;Kaufmann, S.H.;Desnoyers, S.;Poirier, G.G.;Earnshaw, W.C.
  37. Cancer Metastasis. Rev. v.18 Cell adhesion molecules in the development and progression of malignant melanoma Johnson, J.P. https://doi.org/10.1023/A:1006304806799
  38. Br. J. Surg. v.87 E-cadherin- catenin cell-cell adhesion complex and human cancer. Wijnhoven, B.P.;Dinjens, W.N.;Pignatelli, M. https://doi.org/10.1046/j.1365-2168.2000.01513.x
  39. Acta. Gastroenterol. Belg. v.62 The role of the E-cadherin/catenin complex in gastrointestinal cancer Debruyne, P.;Vermeulen, S.;Mareel, M.
  40. Int. J. Oncol. v.17 Induction of apoptosis by ursolic acid through activation of caspases and down-regulation of c-IAPs in human prostate epithelial cells Choi, Y.H.;Bae, J.H.;Yoo, M.A.;Chung, H.Y.;Kim, N.D.;Kim, K.W.
  41. Int. J. Biochem. Cell. Biol. v.31 Apoptosis-associated cleavage of -catenin in human colon cancer and rat hepatoma cells Fukuda, K https://doi.org/10.1016/S1357-2725(98)00119-8
  42. J. Biol. Chem. v.275 Apoptosis-induced cleavage of -catenin by caspase-3 results in proteolytic fragments with reduced transactivation potential Steinhusen, U.;Badock, V.;Bauer, A.;Behrens, J.;Wittman- Liebold, B.;Dorken, B.;Bommert, K https://doi.org/10.1074/jbc.M001458200
  43. Science v.244 Studies of inositol phospholipid-specific phospholipase C Rhee, S.G.;Suh, P.G.;Ryu, S.H. and Lee, S.Y. https://doi.org/10.1126/science.2541501
  44. Cancer Res v.57 Overexpression of phospholipase C-1 in rat 3Y1 fibroblast cells leads to malignant transformation Chang, J.S.;Noh, D.Y.;Park, I.A.;Kim, M.J.;Song, H.;Ryu, S.H.;Suh, P.G.
  45. FASEB J. v.14 Proteolytic cleavage of phospholipase C-gamma1 during apoptosis in Molt-4 cells Bae, S.S.;Perry, D.K.;Oh, Y.S.;Choi, J.H.;Galadari, S.H.;Ghayur, T.;Ryu, S.H.;Hannun, Y.A.;Suh, P.G. https://doi.org/10.1096/fasebj.14.9.1083
  46. Exp. Hematol. v.30 Activation of phosphatidylinositol 3-kinase is important for erythropoietin-induced erythropoiesis from CD34(+) hematopoietic progenitor cells Myklebust, J.H.;Blomhoff, H.K.;Rusten, L.S.;Stokke, T.;Smeland, E.B. https://doi.org/10.1016/S0301-472X(02)00868-8
  47. Cell v.74 p53-dependent apoptosis modulates the cytotoxicity of anticancer agents Lowe, S.W.;Ruley, H.E.;Jacks, T. and Housman, D.E. https://doi.org/10.1016/0092-8674(93)90719-7
  48. Nature v.391 Bcl-2 prolongs cell survival after Bax- induced release of cytochrome c Rosse, T.;Olivier, R.;Monney, L.;Rager, M.;Conus, S.;Fellay, I.;Jansen, B.;Borner, C. https://doi.org/10.1038/35160
  49. Cell v.75 Bcl-2 functions in an antioxidant pathway to prevent apoptosis Hockenbery, D.M.;Oltvai, Z.N.;Yin, X.M.;Milliman, C.L.; Korsmeyer, S.J. https://doi.org/10.1016/0092-8674(93)80066-N
  50. Nature v.374 Principles of CDK regulation Morgan, D.O. https://doi.org/10.1038/374131a0
  51. EMBO J. v.16 ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase Vaziri, H.;West, M.D.;Allsopp, R.C.;Davison, T.S.;Wu, Y.S.;Arrowsmith, C.H.;Poirier, G.G.;Benchimol, S. https://doi.org/10.1093/emboj/16.19.6018
  52. Br. J. Cancer v.85 DNA damage-induced cell cycle checkpoints involve both p53- dependent and -independent pathways: role of telomere repeat binding factor 2 Narayan, S.;Jaiswal, A.S.;Multani, A.S.;Pathak, S. https://doi.org/10.1054/bjoc.2001.2002
  53. Mutat. Res. v.462 Telomeres, telomerase, and myc. An update Cerni, C. https://doi.org/10.1016/S1383-5742(99)00091-5