Ultrastructural Analysis of Chemical Synapses in Cultured Wild Type Drosophila Embryonic Neurons

초파리 배자 신경세포의 화학적 신경연접 미세구조

  • Oh, Hyun-Woo (Korea Research Institute of Biosicence and Biotechnology) ;
  • Park, Ho-Yong (Korea Research Institute of Biosicence and Biotechnology)
  • Published : 2004.12.01

Abstract

To identify the structural basis of mutations that affect synaptic transmission we have begun quantitative ultrastructural descriptions of synapses in cultured Drosophila embryonic neurons. In wild-type cultures, synapses are distinguished by the parallel arrangement of a thickened pre- and post synaptic membrane separated by a synaptic cleft. The presynaptic active zones and postsynaptic densities are defined by electron dense material close to the membrane. Presynaptic regions are also characterized by the presence of one or more electron dense regions, presynaptic densities, around which a variable number of small, clear core synaptic vesicles (mean $35.1{\pm}1.44$ nm in diameter) are clustered. Subsets of these vesicles are in direct contact with either the presynaptic density or the membrane and are considered morphologically docked. A small number of larger, dense core vesicles are also observed in most presynaptic profiles.

초파리 돌연변이를 이용한 신경연접에서의 신경충격의 전달을 알아보기 위하여 배양한 초파리 배자 신경세포의 신경연접 미세구조를 관찰하여 분석하였다. 배양된 Wild-type 초파리 배자 신경세포의 신경연접(synapse)은 신경연접간극(synaptic cleft)에 의해 구분되면서 평행하게 뻗어있는 신경연접전 돌기(presynaptic area)의 세포막과 신경연접후 세포(postsynaptic cell)의 세포막 구조에 의해서 확인하였다. Presynaptic active zones과 postsynaptic densities는 각 세포막부분의 전자밀도에 의해 구분하였다. 특히 두 개의 세포막이 서로 근접하여 있으면서, 하나 또는 그 이상의 전자밀도가 높은 presynaptc densities 를 가지고 있고 그 주위에 투명한 신경연접소포들(clear core synaptic vesicles)이 모여있을 경우 이를 신경연접전 돌기로 보았다. 신경연접전 돌기에는 평균 $35.1{\pm}1.44$ nm 직경의 작고 투명한 신경연접소포들이 모여있었다. 신경연접소포들 중 일부는 세포막이나 세포막의 전자밀도가 높은 부분에 직접 접촉하고 있었는데 이를 신경전달물질이 방출되기 직전인 morphologically docked vesicles로 보았다. 이외에도 신경연접전 돌기에서는 내부가 전자밀도가 높은 물질로 채워져 있고 직경이 큰 dense core 신경연접소포들도 관찰할 수 있었다.

Keywords

References

  1. Atwood HL, Karunanithi S, Georgiou J, Charlton MP: Strength of synaptic transmission at neuromuscular junctions of crustanceans and insects in relation to calcium entry. Invert Neurosci 3 : 81-87, 1997 https://doi.org/10.1007/BF02480362
  2. Blagburn JM, Alexopoulous H, Davis JA, Bacon JP: Null mutation in shaking B eliminates electrical, but not chemical, synapses in the Drosophila giant fiber system: a structure study, J Comp Neurol 404: 449-458, 1999 https://doi.org/10.1002/(SICI)1096-9861(19990222)404:4<449::AID-CNE3>3.0.CO;2-D
  3. Boyer C, Schikorski T, Stevens CF: Comparison of hippocampal dendritic spines in culture and in brain, J Neurosci 18: 5294-5300,1998
  4. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ: Exosome: from internal vesicle of the multivesicular body to intercellular signaling device, J Cell Sci 113: 3365-3374, 2000
  5. Dobrunz LE, Stevens, CF: Heterogeneity of release probability, facilitation, and depletion at central synapses, Neuron 18: 995-1008,1997 https://doi.org/10.1016/S0896-6273(00)80338-4
  6. Fergestad T, Davis WS, Broadie K: The stoned proteins regulate synaptic vesicle recycling in the presynaptic terminal. J Neurosci 19: 5847-5860, 1999
  7. Hamori J, Takacs J, Petrusz P: Immunogold electron microscopic demonstration of glutarmate and GABA in normal and deafferented cerebellar cortex: correlation between transmitter content and synaptic vesicle size, J Histochem Cytochem 38:1767 1777, 1990 https://doi.org/10.1177/38.12.1979341
  8. Hanse E, Gustafsson B: Quantal variability at glutarnatergic synapses in area CA1 of the rat neonatal hippocampus,J Physiol 531 :467-480,2001 https://doi.org/10.1111/j.1469-7793.2001.0467i.x
  9. Kupfermann I: Functional studies of cotransmission. physiol Rev 71 :683-732, 1991 https://doi.org/10.1152/physrev.1991.71.3.683
  10. Korn H, Faber DS: Quantal analysis and synaptic efficacy in the CNS, Trends Neurosci 14 :439-445,1991 https://doi.org/10.1016/0166-2236(91)90042-S
  11. Msghina M, Govind CK, Atwood HL: Synaptic structure and transmitter release in crustacean phasic and tonic motor neurons, J Neurosci 18: 1374-1382, 1998
  12. Murthy VN, Sejnowski TJ, Stevens CF: Heterogenous release properties of visualized individual hippocampal synapses. Neuron 18: 599-612, 1997 https://doi.org/10.1016/S0896-6273(00)80301-3
  13. O'Dowd DK: Voltage gated currents and firing properties of embryonic Drosophila neurons grown in a chemically defined medium, J Neurobiol 27: 113- 126,1995 https://doi.org/10.1002/neu.480270111
  14. Peters A, Palay SL, Webster HD: The fine structure of the nervous system, Neurons and their supporting cells. Oxford university press, NewYork, pp. 138-188, 1991
  15. Redman, S: Quantal analysis of synaptic potentials in neurons of the central nervous system, Physiol Rev 70 : 165-198, 1990 https://doi.org/10.1152/physrev.1990.70.1.165
  16. Reist NE, Buchanan J, Li J, DiAntonio A, Buxton EM, Schwarz TL;Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila, J Neurosci 18:7662-7673, 1998
  17. Satzler K, Sohl LF, Bollmann JH, Borst JG, Frotscher M, Sakmann B, Lubke JHR: Three dimensional reconstruction of a calyx of held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J Neurosci 22 10567-10579, 2002
  18. Schikorski T, Stevens CF: Quantitative ultrastructural analysis of hippocampal excitatory synapses, J Neurosci 17: 5858-5867, 1997
  19. Stapel JK, Osen Sand A, Benfenati F, Pich EM, Catscicas S: Molecular and functional diversity at synapses of individual neurons in vitro. Eur J Neurosci 9 :721-731, 1997 https://doi.org/10.1111/j.1460-9568.1997.tb01420.x
  20. Stevens CF, Wang Y: Facilitation and depression at single central synapses. Neuron 14: 795-802, 1995 https://doi.org/10.1016/0896-6273(95)90223-6
  21. Thomson AM: Molecular frequency filters at central synapses, Prog Neurobiol 62: 159-196, 2000 https://doi.org/10.1016/S0301-0082(00)00008-3
  22. Walmsley B, Alvarez FJ, Fyffe REW: Diversity of structure and function at mammalian central synapses. Trends Neurosci 21 :81-88, 1998 https://doi.org/10.1016/S0166-2236(97)01170-3
  23. Zhang B, Koh YH, Beckstead RB, Budnik V, Ganetzky B, Bellen HJ: Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis, Neuron 21: 1465-1475,1998 https://doi.org/10.1016/S0896-6273(00)80664-9