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Gait Angle Prediction for Lower Limb Orthotics and Prostheses
Using an EMG Signal and Neural Networks

Ju-Won Lee and Gun-Ki Lee*

Abstract: Commercial lower limb prostheses or orthotics help patients achieve a normal life.
However, patients who use such aids need prolonged training to achieve a normal gait, and
their fatigability increases. To improve patient comfort, this study proposed a method of
predicting gait angle using neural networks and EMG signals. Experimental results using our
method show that the absolute average error of the estimated gait angles is 0.25°. This
performance data used reference input from a controller for the lower limb orthotic or
prosthesis controllers while the patients were walking.

Keywords: EMG, prosthesis, gait angle predictor, human computer interaction, neural

networks, orthotic.

1. INTRODUCTION

Increasing numbers of patients are being paralyzed
or are having lower limbs amputated following
industrial and traffic accidents. Many investigators
and companies have developed orthotics® and
prostheses for such patients. Commercial lower limb
prostheses or orthotics help give these patients a
normal life. However, patients who use such aids need
prolonged training to achieve a normal gait. As there
is a difference between a normal gait and the gait with
an orthotic or prosthesis, a patient’s fatigability
increases. To solve this problem, optimum control
should be achieved based on a patient’s gait. Previous
research on the optimal control of patient gait posture
focused on predicting the exact posture angle of the
lower limb with the orthotic or prosthesis. Recently,
Chan et al. used an electromyographic (EMG)
classification for prosthesis control. However, this
method cannot predict the posture angles of a
prosthesis because it only uses a logical scheme to
determine “flexion” and “extension” from the EMG
signals [1]. Therefore, we propose a technique for
predicting the posture angles of patients’ orthotics or
prostheses for a single lower limb. We assumed that
the gait properties of the normal lower limb equal
those of the injured lower limb. The method consists
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of two steps that predict knee angles in the normal
lower limb and the posture angles for the orthotic or
prosthesis based on the predicted angle of the knee.
First, the knee angle during a patient’s gait is
predicted using the two-channel surface EMG signals
for the one normal lower limb. In the second step, the
angles of the orthotic or prosthesis are predicted using
the predicted knee angle for the normal lower limb. In
this study, the predictor used an artificial neural
network. The performance of the predictor was
evaluated in simulations and experiments. The
experimental results using the proposed method
showed that the reference input signal could be used
to control the lower limb orthotic and prosthesis to
give the patient a smooth gait.

2. FEATURES OF HUMAN GAIT

The human gait involves a cycle in which the lower
limb moves though one motion to another while
tracing a circular arc [2]. The cycle starts when one
leg goes forward and the corresponding heel strikes
the ground as the body advances, and ends when the
same foot goes forward again and touches the ground.
Each cycle can be broken into two phases: stance
phase and swing phase. Stance phase is also called
support phase and can be subdivided into the heel-
strike, loading-response, mid-stance, and terminal
stance phases. Swing phase begins when the foot is
off the ground and the body advances, and ends when
the foot touches the ground. Gait involves the lower
limb repeating one motion after another, tracing a
circular arc [2]. The human gait involves changes in
the angles of each joint in the lower limbs. These
angles change with changes in the bioelectrical energy
of skeletal muscles [2-4]. Therefore, the posture angle
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of each joint during a patient’s gait is related to the
EMG signals. However, the human gait includes a
simple genetic reflex function learned through
activities, as well as personal characteristics of the
movement patterns of both legs. This involves various
factors, such as the peripheral/central nervous system
and heart/lung functions. In addition, the gait angle of
each joint depends on the patient’s gait habit and
physical size, among other things. It is difficult to
determine the normal gait pattern of patients with an
amputated lower limb [2,3]. In this study, a
kinematics model of patient gait was obtained using a
neural network. In this method, we assumed that the
kinematic properties of the gait posture angles of the
orthotic or prosthesis for the injured lower limb equal
those of the remaining normal lower limb.

3. PROPOSED METHOD

Human gait depends on walking speed, walking
posture, and the type of surface. However, patients
using a mechanical encoder sensor in order to measure
their gait posture are very uncomfortable. We
proposed a gait predictor using a neural network to
predict the gait angle from the EMG signals (Fig. 1).

The proposed method consisted of two steps. First,
the knee angle of the patient’s gait was predicted
using two-channel surface EMG signals for the
normal lower limb and a radial basis function neural
network (RBFNN). In the second step, the angles of
the orthotic or prosthesis were based on the predicted
knee angles of the normal lower limb, and a
multilayer neural network (MLNN) was used. The
EMG signal [ S,(n)] used was that of the rectus

femoris muscle. This muscle was used because it is
involved in the change in the knee angle of the normal
lower limb. The two neural networks were used in this
study to allow real-time processing, because the
convergence speed is slow when many numbers are
input to the neural network or when the training
signals are nonlinear [7,8]. The, following section
presents the detailed structures and algorithm of the
proposed method.
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Fig. 1. The proposed gait angles predictor for a prosthesis.

3.1. Knee angle prediction

Usually, the amplitude of an EMG signal is 20~300
mV and the frequency band is 20~300 Hz [4-6]. In
this study, the electrode for measuring the EMG was
attached to the rectus femoris (Fig. 1). To remove the
noise included in the amplified EMG signal, a 2™-
order 20~300-Hz Butterworth band-pass filter and a
60-Hz notched filter were designed. The RBFNN was
used to learn the kinematics of the knee angles and the
rectus EMG. The desired signal and input signal of the
RBFNN were the filtered output signal 8/ (¢)of a tilt

sensor attached to the center of the shin and the
absolute value vector of the EMG signals, i, .
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where 7 is the sampling number, P and M are filter
orders, and a, and B, are the coefficients of the
moving average filter and FIR low-pass filters,
respectively. The extracted feature signal was input to
the RBFNN (Fig. 2). Table 1 shows the structure of
the neural network used for learning.

The desired angle of the knee joint of the normal leg
was set to g(n), minimizing the error in estimating
the knee joint angle. After completing the neural

network learning, the knee joint angle was extracted
from a forward operation as shown:
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Fig. 2. Knee angle predictor using RBFNN.
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is the output (estimated knee angle) of the neuron in
the output layer. To obtain the optimal m(n), ,(n),
and wy(n) for minimizing the learning error E(n)
between gl(n) and Gl(n), the adaptive learning
algorithm of the neural network was used as follows:
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where Mg> Mo ,and 77, are learning constants.

3.2. Posture angle prediction for lower limb orthotics
and prostheses

We used a multilayer neural network (MLNN) [7] to
predict the gait angles of orthotics or prosthesis. The
structure of the MLNN is shown in Fig. 3. The
MLNN was used to predict the coxa and knee joint
angles of the artificial leg during walking based on the
predicted knee joint angle of the normal leg. This
proposes an identification method for the patient’s gait
kinematics. To estimate the coxa and knee joint angles
of the orthotic or prosthesis of a patient with one
amputated leg, this method obtained gait patterns of a
physically similar person. The pattern data were then
used to obtain the gait angle. The learning algorithm
used the Error Back Propagation Algorithm (EBPA)
[7] of the multi-layer.

The input of the gait angle predictor neural network

OI
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07 (n) 0 (n)
Fig. 3. The MLNN structure used to predict gait angles.

was the knee joint angle predicted from the EMG. The
output was the predicted posture angle of each joint of
the orthotic or prosthesis during walking. The
following shows the learning method of the neural
network used to predict the patient’s gait patterns. The
respective outputs Oi(n), Oy(n), and O,(n) of neurons
in the input, hidden, and output layers of the gait
prediction neural network are:
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where 7 and P are the numbers of neurons in the input
and hidden layers, respectively; the filter orders £, and
1, are the activate functions of each neuron; and A; and
A, are the slopes of the respective activation functions.
In neural network learning, the error from the desired

value of the neural network, d,(n) ORI

was obtained as shown in the following equations:
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where L and y are the filter order and coefficients of
the moving average filter with an FIR structure,
respectively. The weights adjusting the weight to
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minimize E(n) should change in the negative gradient
direction. Therefore, the weight variation could be
obtained by partially differentiating the direction
vector of the weight for the error. The variation of the
weight in each layer is:

O0E(n)

i 4 1) =) = (19)
pi

Wy (1) = (1) = 20)
ap

where # is the learning constant. The initial weight
ranged from -0.5 to 0.5. The gait posture angle of
each joint of the artificial leg was estimated using the
knee joint angle obtained during walking with forward
operation of the neural network. This was based on
the weight data of the neural network that learned the
normal gait data.

4. EXPERMENT AND RESULTS

4.1. Sensor interface design and filtering

The EMG sensor and gait angle sensor interfaces
were designed to verify the efficiency of the proposed
gait posture prediction. The Ag/AgCl electrode and
TILT SA1 (DAS Co.) tilt sensor for measuring the
EMG and each joint angle were attached to the rectus
femoris and center of the shin, respectively (Fig. 4).
The tilt sensor had a +£60° range. In the sensor
interface, the EMG signal was amplified 200 times
and the tilt sensor was amplified one time.

The analog filters used to remove the noise
included in the amplified EMG signals were designed
as a 2"-order Butterworth band-pass filter with
20~300 Hz and a 60-Hz notched filter. The
implemented analog interface is shown in Fig. 5.

The filtered EMG signal and each joint angle signal
were acquired using an MP100 (Biopac Co.) after
setting the sampling frequency to 1 kHz. The acquired

Fig. 4. Positions of the sensors for measuring the
angles and EMG signals.

Fig. 5. The implemented interface system.

Table 1. The RFBNN and MLNN structures used in
the experiment.

Neural Networks

RBF MLNN
Input Neurons 20 100
Hidden Neurons 10 20
Output Neurons 1 2
Activation . bipolar
. Gaussian . .
function sigmoid
Learning rate, 7 0.1 0.1
o = (| -60[deg .|

@ +[+60[deg.][) /g =12 )

Ag =(]~60[deg .]|

Initial +]|+60[deg 1)/ ¢ =12
weights |7 m, = (—60[deg .]) )
+Ag*k
for k=0,1,2,....q
w -0.5~0.5 0.5~0.5

L

angle signals of each joint included vibrating noise
that occurred while the patient was walking. The noise
signals were filtered using a 500"-order moving
average filter (MVF). The absolute value signals,
E;(n), were filtered using a 40™-order low-pass filter
in which the cutoff frequency was 2 Hz. The
amplified EMG signal, filtered EMG signal, joint
angles, and filtered angle signals are shown in Fig. 6.
These results were obtained upon walking five steps.

4.2. Knee angles prediction of normal lower limb and
gait angles prediction

Table 1 gives the structures of the RBFNN and
MLNN used to predict the knee angles of the normal
lower limb and the gait angles. Three cases were
considered when evaluating the performance of the
proposed method based on the neural networks
structure.

The first case was walking on a normal road. The
second case was standing up from a chair. The third
case was sitting' down on a chair. The predicted results
for these respective cases are given in Figs. 7, 8, and 9
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Fig. 6. The measured EMG and angle signals using
the implemented interface.
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(a) The estimated knee angle during gait.
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(b) The estimated angles during gait.
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Fig. 7. Predicted posture angles when walking.
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(a) The estimated knee angle when standing up.
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(b) The estimated angles when standing up.
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Fig. 8. Predicted posture angles when standing up.

Tables 2 and 3 summarize the performance index.
In these tables, the estimated average error of each
joint was 0.25, giving the estimated posture angle
with 97.5% accuracy. This accuracy should be
expected if the estimator was available for controlling
the motion of an artificial leg while walking. The
estimated angle was set as the reference signal for the
posture controller.
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Table 2. Errors of the predicted knee angle of the
RBFNN for the normal limb.

Absolute mean Total mean

Cases error [deg.] error [deg.]
gait 0.18
standing up 0.05
sitting down 0.03 0.083
Continuous actions
(gait~ sitting down~ 0.07
standing up)
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Fig. 9. Predicted posture angles when sitting down.

Table 3. Errors of the gait angles of MLNN based on
the predicted knee angle.

Absolute Mean| Total Mean
Cases Error Error
Hip | Knee Hip Knee
Gait 0.14 0.23
Standing up 0.61 0.06
S{ttmg dowr} 0.68 0.08 04 01
Continuous actions
(gait> sitting down~ | 0.17 | 0.03
standing up)

5. CONCLUSION

This study proposed an estimation technique for
predicting the posture angles of patients’ orthotics or
prostheses. Experimentally, the accuracy of the
estimated gait posture angle using the proposed
method was 97.5%. The reference input could be used
to control the postures of orthotics and prostheses.
Therefore, orthotics and prostheses using this method
should have a very beneficial effect in paralyzed
patients or amputees.
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