International Journal of Control, Automation, and Systems, vol. 3, no. 2, pp. 195-201, June 2005 195

Positive Real Control for Uncertain 2-D Singular Roesser Models

Huiling Xu, Lihua Xie, Shenyuan Xu*, and Yun Zou

Abstract: This paper discusses the problem of positive real control for uncertain 2-D linear
discrete time singular Roesser models (2-D SRM) with time-invariant norm-bounded parameter
uncertainty. The purpose of this study is to design a state feedback controller such that the
resulting closed-loop system is acceptable, jump modes free and stable, and achieves the
extended strictly positive realness for all admissible uncertainties. A version of positive real
lemma for the 2-D SRM is given in terms of linear matrix inequalities (LMIs). Based on the
lemma, a sufficient condition for the solvability of the positive real control problem is derived
in terms of bilinear matrix inequalities (BMIs) and an iterative procedure for solving the BMlIs

is proposed.

Keywords: 2-D singular systems, positive real control, positive realness, LMIs, state feedback.

1. INTRODUCTION

The concept of positive realness has played an
important role in control and system theory[14-16]. In
the past years, the problem of positive real control has
received much attention. The objective is to design
controllers such that the resulting closed-loop system
is stable and the closed-loop transfer function is
positive real [17]. The motivation for studying the
positive real control problem stems from robust and
nonlinear control, in which a well-known fact is that
the positive realness of a certain loop transfer function
will guarantee the overall stability of feedback
systems if uncertainty or nonlinearity can be
characterized by a positive real system [16]. Now, it is
known that a solution to such a problem for a known
linear time-invariant system involves solving a pair of
Riccati inequalities [18]. When parameter uncertainty
appears, the results in [18] were extended by [19,20],
where observer-based controllers were designed and
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an LMI design method was developed. The
corresponding results for discrete-time systems can be
found in [21]. Recently, the positive real control
problem has been extended to 1-D discrete-time
singular systems [22].

On the other hand, 2-D singular systems have
received much interest due to their extensive
applications in many practical areas [1-11]. A great
number of fundamental results on 1-D singular
systems have been extended to 2-D singular systems
[3-11]. Using the z-transformation approach,
Kaczorek [1,2] studied the general response formula
and minimum energy control problem for 2-D general
descriptor models in both shift-invariant and varying
coefficient cases. Karamanciogle ez al. [3] extended
the geometric method to the 2-D singular case. The
admissibility of input of 2-D singular systems was
investigated in [4] and some results were obtained.

. Zou and Campbell [5] proposed an asymptotic

stability theory based on the concept of jump modes,
which was further improved in [6]. It reveals that the
existence of jump modes in such systems is one of the
characterizations that regular systems do not have.
Moreover, some results of structural stability of 1-D
singular systems were also extended to 2-D singular
systems in [7] and [8] by different approaches. For the
problem of state observer design, Zou and Wang [9]
extended the notion of detectability to 2-D singular
systems, and a singular observer design approach was
developed for a detectable singular system. The
problem of regular state observers for 2-D singular
systems was studied in [10]. Reference [12] discussed
the problem of robust Hx control for linear discrete
time 2-D singular Roesser models with time- invariant
norm-bounded parameter uncertainty. However, the
problem of positive real control for 2-D discrete-time
singular systems has not been investigated in literature
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In this paper, we consider the problem of positive
real control for uncertain 2-D singular Roesser models
(2-D SRM). The parameter uncertainties are assumed
to be time-invariant and norm-bounded. Attention is
focused on the design of state feedback controllers
such that, for all admissible uncertainties, the resulting
closed-loop system is acceptable, jump modes free,
and stable while the closed-loop transfer function
matrix from the disturbance to the controlled output is
extended strictly positive real (ESPR). A sufficient
condition for 2-D SRM to achieve acceptability,
causality, stability and ESPR property is proposed.
Based on this, a sufficient condition on the existence
of desired state feedback controllers is derived in
terms of BMIs, which can be solved by an iterative
procedure.

The paper is organized as follows: In Section 2, the
problem formulation and some necessary preliminaries
are presented. Section 3 presents a version of positive
realness for 2-D SRM. We briefly summarize the
paper in Section 4.

Notation: Throughout the paper, the superscripts
‘T’ and “*’ stand for the transpose and complex
conjugate transpose, respectively. The notation of
XzY (Xz2Y ), where X and Y are real symmetric
matrices, represents that X-Y is a positive semi-
definite (positive definite) matrix.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider a 2-D SRM of the following form.

ho: . hoo o
E{x (’”’])}:(AMA)F (”J)}Bu(i,j) (1)

x"(i, j+1) x" (0, )
+Ld(i, j),
. [x" (i,j)} -
z(i,)=H ) +Gd(i, j) (2)
x"(1, )

with the so-called standard quarter plane boundary
conditions[25]:

X0, )=x", ¥ (@,00=x7, i,j=0,1,2,... (3

where x"(i,j)e R™ , x"(i,j)e R™ are respectively
the horizontal and vertical states; u(i,j)e R" ,
z(i,j) € R' are the input and output vectors,

respectively; and d(i, j)e RP is the disturbance

vector; A, B, G, L, H are real matrices of appropriate
dimensions. AA is a time-invariant parameter
uncertainty. £ is possibly singular, satisfying the 2-D
regular pencil condition, i.e., for some finite pair (z,w)

D)
det[EI(z,w)— Al= 2. > ayz*w' 20,
k=01=0

where [(z,w)= diag{zlnl,wlnz}. I, is the identity

of dimension nxn. 0<#w <n,. Such a condition
guarantees that the 2-D SRM is uniquely solvable. For
simplicity, we call system (1)-(2) with A4=0 the
nominal system of (1)-(2). When a5 7 #0, system
()-(2) is called acceptable [1-5]. It is revealed in [5]
that in the 2-D singular case, only acceptable systems
can be considered as well posed in some sense. Hence,
from now on we only discuss the acceptable systems.
In this paper, we assume that the parameter
uncertainty AA is of the form

AA = MFN , ©))
where M and N are known real matrices, and
F € R™/ s an unknown real matrix satisfying

FFT <1I. (5)

The parameter uncertainty A4 is said to be
admissible if both (4) and (5) hold. Consider the
following nominal unforced 2-D SRM of (1)-(2)

hy: . h,o.o -
E{x O”’”}A{x (”)} +Ld(G, ), ©6)

x'(, j+1) x'(i, )
hoo o
2, j):H{x (@7 )} +Gd(, j). 7
x" (i, J)

When system (6)-(7) is regular, the transfer function
of this system is as follows:

I(z,w) = H[EI(z,w)— A 'L+ G . (8)

Throughout this paper, we shall use the following
concept of positive realness for the 2-D SRM, which
is extended from the 1-D case [18].

Definition1:

(1) The 2-D SRM (6)-(7) is said to be positive real
(PR) if its transfer function matrix 3(z,w) is

analytic in |z|>1, |[w|>1 and satisfies 3(z,w)+

I (z,w) 20 for [2[>1, |u]>1.

(2) The 2-D SRM (6)-(7) is said to be strictly positive
real (SPR) if its transfer function matrix J(z,w) is

analytic in |z’21 , |w=1 and satisfies (e’

2y + I (/™ ,e/2) >0 for w,w, €[0, 27).
(3) The 2-D SRM (6)-(7) is said to be extended
strictly positive real (ESPR) if it is SPR and
T(0,00) + S(oo,oo)T >0.

Now, the positive real contrel preblem for 2-D
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SRM (1)-(2) to be addressed in this paper can be
formulated as follows: for a given uncertain 2-D SRM
(1)-(2), find a state feedback

u(i, j)=Kx(i,jy, KeR™", n=n, +n, )

such that, for all admissible uncertainties (4)-(5), the
closed-loop system

hoe . [ k. .
E{x (’”’J)}A * (l’])}LLd(i,j), (10)

VRN EY )
hyoe o]
z(i,j):H{x G 6ad, ) (11)
x" (i, J)

is acceptable, internally stable, jump modes free and
ESPR. Here 4. =A+AA+BK and 3(z,w)= H[EI

(z,w)—Ac]_1L+G is the transfer function matrix
from the exogenous input d(i, j) to the controlled
output z(i, j).

Remark 1: This jump mode-free requirement of
system (6)-(7) can be defined equivalently by the
nonexistence of mnonzero positive power items

(z'w/, i>0 orj>0) in the Laurent expansion of the
matrix (EI(z,w)—A) ', o>|z>1, 0o>wi>1 [5].
We require that the closed loop system to be free of
jump modes because the jump modes may amplify the
disturbances dramatically [5]. It is also equivalent to
requiring the closed loop system be a causal one.

We conclude this section by introducing several
lemmas, which will be used in the proof of our main
results.

Lemma 1 [5,6]: The 2-D SRM (6)~(7) is acceptable
and internally stable if and only if

p(z,w) 0, 0<|z[<1, 0<|wi], (12)

where p(z,w)=det[F — 4I(z,w)].

Lemma 2 [12]: The 2-D SRM (6)-(7) is acceptable,
internally stable, and jump modes free if there exists a
symmetric block-diagonal matrix P =diag{P,,FP,}

e R™" with P, e R and P, e R"™ such that

EPE" 20, (13)

Ar4AT —EPET <0. (14)
Moreover, if (14) holds, then P is nonsingular.

Lemma 3 [13]: Let T be a nonsingular symmetric

matrix and F satisfy (5). [f M,N are constant matrices
of appropriate dimensions and there exists a constant

£>0 suchthat ¢ I—MTTM>O,then

(A + MFN)T(A+MFN)T
< ATAT + ATNT (el = NTNTYINTAT + & MmT .

3. POSITIVE REALNESS OF 2-D SINGULAR
SYSTEM

The following theorem gives a sufficient condition
for the 2-D SRM (6)-(7) to be acceptable, internally
stable, jump modes free and ESPR. This result will
play a key role in solving the positive real control
problem for the 2-D SRM in the next section.

Theorem 1: The 2-D SRM (6)-(7) is acceptable,
internally stable, jump modes free, and ESPR, if there
exists a symmetric block-diagonal matrix P=

diag{P,,P,} eR™" such that the following LMIs
hold:

EPET 20, (15)
APAT — EPET L-APHT
<0, (16)
' ~-HP4" —(G+GT —HPHT)

where P, € R and P, € R"2"2 .
Proof: From (16), it is easy to see that
AP4" - EPET <0.

By Lemma 2, it follows that 2-D SRM (6)-(7) is
acceptable, internally stable and jump modes free.
This implies that 3(z,w) is analytic in lzIZl,

[w| > 1. Next, we will show that
I/, /2y + 3 (7, e/92) > 0

for w,m, €[0,27). By the Schur complements, it
follows from (16) that

G+G' —HPH" >0 (17)
and
APAT —EPET +(L - 4PHT) (18)

(G+GT —HPHTY L (I ~HPAT)<0.
Denote

z:ejw', w:ejwz, w5 €[0, 27),
[(z,w)=El(z,w)— A.

Now, partition 4 as

Ay A
y :{ 11 12}
Ay Ay
with compatible dimensions to /(z,w). Then some
elementary algebraic manipulations show that for all

y,00 E[O’ 2”)

M GwPHE !, w Y +arri, wH!
+T1(z,w)PAT =—APA" — EPET .
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Note that the matrix T1(z,w) is invertible for all
wy,w, €[0, 27). Hence, it follows from the above
equality that
HPHT + HII(z,w) ' APHT
+HPATTI(z ", w Yy T T (19)
= HII(z,w)" (4PA" — EPET) 11z, wy THT .

On the other hand, inequality (18) implies that there
exists a matrix R>0 such that

R+ (APAT —EPETY+(L- APHT)
x(G+G" —HPHTY ' (LT —HPAT)<0. (20)
Pre- and post-multiplying (20) by H(z_l, w iy T

HT and HTI(z,w)
that for all w;,w, €[0, 27),

respectively, then we have

HT(z,w) ' (ATPA—ETPE) TGz, w )y T HT
+HIOGzw) ! oneE L, wHTHT <o, 1)
where

Q=R+ (L- APH(G+G™- HPH"'x (L"- HP4").

Now, substituting (19) into (21) gives that for all
w, 0, €0, 27),

~HPHT — HTI(z,w) ' APHT
—HPA Iz, w iy THT
+HO(z,2w) o nELbwHTHT <o.

Hence by the last inequality, we have that for all
a)laa)z 6[07 27[)7

Iz, W)+ I (z,w)=G+ G+ HI(z,w)"' L
+neE ", whY Te?

=(G+GT ~HPHT) + HTI(z,w)"' L
+ 0wy THT +HPHT

> (G+GT —HPHT) + HII(z, w)™
+(@ —HPATY Iz, w Y T HT
+HH(Z,W)_1 Q H(Z_l,w_l)_THT

=(G+G" —HPHT) (LT ~HPA") Q7!
(L-APH")
HIOE L, w Y THT + Q7 (L- APHT)]
xQ [HT(z,w) '+ (LT = HPAT) Q7

>(G+G" —HPHT) (" - HPAT) Q7
x(L—APH"). (22)

(L-APHT)

Note that
G+G" —mpHT 1T —HPAT 0
>4V,
L— APHT Q

Then from the Schur complements, it follows that

(G+G" —HPHT) (1" —HPAT) !

x(L — APHT)>0.

This together with (15) shows that for all
o, @, €[0, 27) , I/ ,e/2)+ T (/,e/2) >0 .
Hence 2-D SRM (6)-(7) is ESPR. This completes the
proof.

Remark 2: Theorem 1 provides an LMI condition
for the 2-D SRM (6)-(7) to be acceptable, internally
stable, jump modes free, and ESPR. When the 2-D
SRM (6)-(7) reduces to a 1-D singular system, it is
easy to show that Theorem 1 coincides with Theorem
3 in [22]. Therefore, Theorem 1 in this paper can be
regarded as an extension of existing results on

positive realness for [-D singular systems to 2-D
singular systems described by the Roesser model.

4. POSITIVE REAL CONTROL OF
UNCERTAIN 2-D SRM VIA STATE
FEEDBACK

In this section, a sufficient condition for the
solvability of the positive real control problem is
proposed, and a BMI approach is developed to design
state feedback controllers.

Theorem 2: Consider the uncertain 2-D SRM (1)-

(2). If there exist scalars &>0, matrices SeR™",
R eR™™, RycR™",
block-diagonal matrix P=diag{P,, P,} € R™" with

P, e R and P, € R™ such that

Ry € R*" and symmetric

EPET 20, (23)
el -NPNT >0, (24)
\PII \PIZ lP13 \Pl4

T
Vi, Wy Wi ¥y
T T

Vi3 W3 Wi Wiy
T T T

Wiy Yo Wi Yy

<0, (25)

where
W), =—EPE" +eMMT + R Al + AR,
Wi, =L-RH" + 4R} Y3 =RNT + 4, R]
Wiy =4S —R, ¥y =—HR, —RyHT —(G+GT),
¥y, =R,N" ~HR! ,W,, =—HS—R,,
Wi =RyNT + NR] —¢l W5, = NS—R;,
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Y, =P-S-S" 4, =A+BK,

then there exists a state feedback such that, for all
admissible uncertainties AA defined as in (4)-(5),
the closed loop system (10)-(11) is acceptable,
internally stable, jump modes free, and ESPR.

Proof: Denote

[ _EPET + eMmT L 0
W= I —(G+G") 0 |,
L 0 0 el
] Ry
w=4l -HT N R=|Ry|.
R3
Then (25) can be written as
{W +¥TRT +RY -R+ \PTS} -
-RT+s™y  p-s-sT

Note that this is in turn equivalent to [26]
W+ Py <0.

A M
Let ®= , I'= ,
-H 0

—EPET L
7= .
' —(G+6h

Then
W+ py
—EPET + eMMT L 0
= 17 ~(G+G") 0
0 0 —&l
A
+|-m|pP [A,Z _HT NT] (26)
N
| Z+ oPOT +TT ©PNT o
NPOT —el + NPNT
Using Schur complements, (26) is equivalent to
Z+0Pe! + 7T
+OPNT (eI -NPNT)'NPOT <0. (27)

By Lemma 3, we have

Z+0POT + T +0PNT (1 - NPNT) ' NPOT

>7+[@+FN]P[® +TFN]
| 4.p4l - EPET L—APHT
F —HPAT  «(G+G" —HPHT)|

Therefore, the desired result follows immediately
from (27) and Theorem 1. This completes the proof.

From Theorem 2, the following iterative algorithm
can be implemented to solve the uncertain 2-D SRM
positive real control problem.

Algorithm.

Stepl: Choose an initial K, solve the following
convex optimization problem:

min  {u}.
(¢,P,S,R)
Subject to:
w+9TRT +RY -R+9TS
<ul
RT+s8™  p-s-sT

and (23)-(24) are hold. If 4 <0, then problem is

solved; Otherwise, go to Step 2.

Step 2: With the obtained scalars ¢ and matrices
P, S, R, solve the above optimization with respect to K.
Again, if 4 <0, the problem is solved; otherwise, go

to Step 1.

Now, we present an illustration example to the
proposed design approach in Theorem 2. Consider a
2-D SRM (1)-(2) with parameters:

111 211 3 10
E=lotop A=lot1| 27z M)
G= , H= :1 , M=[0.10.1]", N=[0.1 0.1].

It is easy to see by Remark 1 and Lemma 1 that this
system is an acceptable, unstable system with jump-
mode and not ESPR. By the above algorithm, the
solution to BMIs (23)-(25) is as follows:

p_[712534 0
0 323771

~0.0055 0.0806
‘:[0.0806 0.1053}’
© [0.0449 02034
2:{0.2034 —2.0038}’
Ry =[0.0001 0.0035],
£=28157.

The corresponding state feedback controller can be
obtained as

hoe .
x" (i,
u(i, j) = [-44 03] @0,
x" (i, /)
By direct computations, it can be verified that the
above controller makes the closed loop system
satisfies all the required performances.
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state

Fig. 2. The closed-loop state response of x".

A comparison of state responses of x" between the
open loop system and the closed-loop system are
shown in Figs. 1 and 2, respectively. It can be
observed that the closed-loop state response is
stabilized by the controller designed via the BMI
approach to the positive real control of uncertain 2-D
singular systems in Section 3 while the open loop
system is unstable. The state responses of x” is similar
and thus omitted.

5. CONCLUSIONS

This paper has studied the positive real control
problem for uncertain 2-D singular systems described
by the Roesser model with time-invariant norm-
bounded parameter uncertaintics. The proposed
feedback law not only makes the corresponding
closed-loop acceptable, jump modes free, stable, but
also guarantees that the closed-loop transfer function
from the disturbance to the controlled output is
extended strictly positive real.
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