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Neural Network Active Control of Structures
with Earthquake Excitation

Hyun Cheol Cho, M. Sami Fadali, M. Saiid Saiidi, and Kwon Soon Lee

Abstract: This paper presents a new neural network control for nonlinear bridge systems with
earthquake excitation. We design multi-layer neural network controllers with a single hidden
layer. The selection of an optimal number of neurons in the hidden layer is an important design
step for control performance. To select an optimal number of hidden neurons, we progressively
add one hidden neuron and observe the change in a performance measure given by the
weighted sum of the system error and the control force. The number of hidden neurons which
minimizes the performance measure is selected for implementation. A neural network was
trained for mitigating vibrations of bridge systems caused by El Centro earthquake. We applied
the proposed control approach to a single-degree-of-freedom (SDOF) and a two-degree-of-
freedom (TDOF) bridge system. We assessed the robustness of the control system using
randomly generated earthquake excitations which were not used in training the neural network.
Our results show that the neural network controller drastically mitigates the effect of the
disturbance.
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1. INTRODUCTION

Active control of structures subject to
environmental loads, such as strong winds or
earthquake excitations, is an important control
application in civil engineering., The literature on
vibration controls to reduce effects of earthquakes or
strong winds includes a variety of control approaches
[1]. The main control techniques are H,, [2], variable
structure control [3], intelligent control based on fuzzy
logic [4], neural networks [5], and genetic algorithms
[6]. Neural networks offer significant advantages that
are particularly suited to the active control of structure
systems. They provide excellent control performance
for nonlinear or uncertain systems.

The design of a neural network controller often
requires extensive simulations to select optimal design
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parameters such as the learning rate, the initial
weights and biases, the number of input patterns, and
the number of hidden layer neurons for a multi-layer
neural network [7]. All these parameters affect the
performance of a neural network and its ability to
reach a satisfactory design solution.

In control applications, the number of hidden
neurons significantly affects performance. For
example, neural networks with a large number of
hidden neurons often result in expensive computation
and memory requirements, and in an excessive
learning time. On the other hand, an insufficient
neuron number yields neural networks that may not be
powerful enough for a given learning task. Therefore,
the selection of the number of hidden neurons is an
important step in the design of neural network control
systems.

Kung and Sietsma devised pruning algorithms that
use a penalty function for choosing hidden neuron
number [8,9]. Their neural networks are started with a
large number of neurons and successively decreased
until a specified performance measure reaches an
unacceptable level. Alternatively, they start with a
small number of neurons and add new neurons until
networks are achieved to a required performance.
Lippmann reported that neural networks having eight
hidden neurons yield the best results among two-
input-two-output networks [10]. From his experience,
he deduced the specific formula H = log, T where T is
number of input training patterns and A is number of
neurons in a hidden layer. The results using his
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formula were compared to earlier research by
Mirchandani and Cao [11]. Mehan, Mehrotra, and
Ranka pointed out that the selection of a hidden
neuron number depends on the number of input
training patterns for classification problems in 7-
dimensional input space [12]. Even though there are
considerable results available and ongoing research,
the number of hidden neurons is typically chosen by
trial and error through several numerical analyses,
especially in control applications.

In this paper, we select an optimal number of
neurons in the hidden layer of a neural network
controller based on a measure of the network
performance. The performance measure is formed by
a weighed sum of the system error and the control
input force for a given training time. We progressively
increase the number of hidden neurons and observe
the performance measure. The neural network is
iteratively trained with a fixed number of hidden
neurons under the same simulation conditions and the
performance measure is calculated. Based on the
results, we determine the neuron number with the
minimum function for implementation of a neural
controller.

The neural network controller was used to reduce
vibrations in nonlinear bridge systems due to
earthquake excitation. Two neural controllers were
designed and trained against El Centro earthquakes:
one for a single-degree-of-freedom (SDOF) and the
other for a two-degree-of-freedom (TDOF) system.
The seismic behavior of the majority of bridge
population can be captured using two-degree-of-
freedom models. To evaluate controller robustness, we
tested the proposed control approach through
computer simulations using randomly generated
earthquake excitations, other than that used in network
training.

The outline of this paper is as follows. Section 2
discusses a neural control design for bridge systems.
Section 3 presents numerical examples for bridge
control systems. Robustness of controllers is
evaluated in Section 4. Finally, conclusions are given
in Section 5.

2. NEURAL NETWORK CONTROLLER
DESIGN

In this Section, we design a multi-layer neural
network controller for bridge systems and develop a
learning algorithm based on an optimization approach
for minimizing an appropriate performance measure.
Fig. 1 shows the neural control for structure systems
subject to environmental disturbances such as wind
forces or earthquakes. In Fig. 1, x is the system output,
u is the active control force, and e is the system error
expressed as -x for zero reference input. The neural
controller is a system whose external input is the error

Environments
disturbances

'

Structure
Systems

e=-x_ | Neural u
Network

Fig. 1. A neural network control for structure systems.

Fig. 2. A structure of a neural network controller.

signal and that yields the control force applied to the
structure.

We use a three-layer network structure with m input
neurons, /4 hidden neurons, and » output neurons for
each layer as illustrated in Fig. 2. The network output
or control input is expressed as

h
ui=a Z(vl]g])-‘rbl N (1)
j=1

where i = 1, ..., n, a is a constant, v; and b; are,
respectively, the weight and bias between the second
and the third layer. ¢ is the output signal of the hidden
layer and is expressed as

Gj:¢j[z(wjk7k)+ﬂjJa (2)
k=1

where j = 1, ..., h, wy and f are the weight and bias
between the first and the second layer. ¢ denotes an
activation function, and y is the input signal. In this
paper, the input signals are the error and the error
change.

2.1. Learning algorithm for bridge systems

Structural control systems usually need a large
control input force to reduce displacement due to
environmental disturbances. In practice, the control
force available is limited by actuator constraints [13].
Thus, we should consider means of reducing the
control force amplitude in our controller design. To
this end, we minimize a performance measure formed
by the sum of the squares of the system errors and the
control input forces. The performance measure is
given by
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%i(q,el + ru; ) 3)

i=1

where g; and r; are nonnegative weights. The goal of
network training is to minimize the objective function
by selecting suitable network weights and biases w, v,
B, and b in Fig. 2 using an optimization approach. We
use a steepest gradient descent optimization method
[7] and their adjustment rules are respectively given by

Wi (e + D) =wi () =7 Gy )

oJ
vty + D) =v; () - U&v—,-j (5)
Bt +1)=ﬂ,~<tk>—n(%, ®)
bty +1>=bi(tk)—n§—b"i, @
wherei=1, ...,n,j= Lh k= .., m, t; denotes

discrete time, and nisa learnmg rate. To solve the
partial differential equations (4)-(7), we use the chain
rule to obtain the following expressions
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Substituting (8)-(11) in (4)-(7),
finally obtain the adjustment rules

respectively, we

Wit + 1) =w k(tk)mZ( i) 67k s (12)
vt +1) = i.(tk)+n5igj, (13)
Bt +1)= ﬂ(tk)mZ(,,,) (14)
bt +1)=b,(1,)+nd;, (15)

where ¢/ denotes the derivative of the activation
function and

J; = a(qieisign(%] - r,-u,-) .
i

(16)

We also adapt the simplification of [14] where
sign[fx_i] is replaced by %%
ou o

i i
2.2. Optimal hidden neuron number

Several important parameters must be properly
determined in neural network design: the learning rate,
the neuron number in each layer, the initial conditions
of the weights and biases, etc. Unfortunately, there is
no general result for their optimal selection. These
numbers are typically iteratively determined using
simulations or experiments under varying simulation
scenarios prior to implementation. In this paper, we
focus on the determination of an optimal number of
neurons in the hidden layer assuming a fixed learning
rate and random initial weights and biases. We run N
iterative training cycles for the neural network with a
fixed hidden neuron number which it progressively
increased. We observe the average performance
measure defined in (17) for each hidden neuron
number during the control time interval [0, 7] and
select the optimal number which minimizes the
performance measure

1 N T 2 5
:FZ Z{qeh () +ruy, (tk)}.

i=1t;=0

(17)

3. DESIGN EXAMPLE

To evaluate the proposed control approach, we
applied it to the control of a nonlinear SDOF and a
nonlinear TDOF bridge system. We designed two
neural network controllers for each bridge system and
carried out computer simulations, from which the
time-histories of their displacements were plotted.

3.1. SDOF bridge control
We first consider a typical nonlinear SDOF bridge
whose motion equation is

mpX+cx+ fr(x)=u-myf,, (18)

where m, is a mass element, ¢ is a damping constant,
f. 1s the earthquake excitation, x is the bridge
displacement, u is the active control input force from a
neural controller, and f; is an inelastic restoring force.
We model the restoring force as the Q-hysteresis
nonlinearity [15] shown in Fig. 3. Earthquake
excitation is an acceleration history of ground motion.
Fig. 4 shows the time series of the well known El
Centro earthquake.

We select the system parameters in (18) as m;, = 2.07
metric tons and ¢ = 1.44 kN-sec/cm. For the neural
network we selected a learning rate of 0.01, the initial
weight and bias values as uniformly distributed in the
interval [-0.5, 0.5], and a bipolar sigmoid activation
function. The neural network has two input signals:
the error e and the error change Ae = x(¢;-1) - x(1,).
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To select an optimal hidden neuron number, we
progressively increased the number of hidden neurons
from 1 to 50, training the network for 500 iterations
and evaluating it for each value. After each training
period, we calculated the performance measure for a
control time interval [0, 10] s with a 0.01 s sampling
period. We selected an error weight g =1 and a much
smaller control input weight » = 107, because the
magnitude is much larger than the system error. Fig. 5
is a plot of the normalized cost versus the number of
hidden neurons for the SDOF system.
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Fig. 3. Q-hysteretic nonlinearity model.
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Fig. 4. Acceleration history of El Centro earthquake.
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Fig. 5. Normalized cost for the SDOF system.

Fig. 5 reveals a gradual error reduction and a gradual
increase in the control force as the hidden neuron
number is increased. In other words, a neural network
composed of a large number of ‘hidden neurons
provides a superior performance in terms of error
reduction, but requires a greater control force. The
overall optimum performance as given by (17) is
achieved with 15 hidden neurons where the total cost
is the lowest. We constructed a neural network with
15 hidden neurons as a controller for the SDOF bridge
system. First, we simulated the system without control
and plotted the trajectories of dynamic bridge
displacements in Fig. 6. In Fig. 6, the total error which
is calculated by summing absolute errors in the time
interval [0, 10] sec, is about 354.83 cm with a
maximum absolute displacement of about 2.17 cm.
Fig. 7 shows the trajectories of system responses and
control input forces applying a neural control. In Fig.
7, the total error is about 90.22 c¢m, which is about a
74.57 % improvement over the uncontrolled case, and
a maximum absolute displacement of less than 1 cm,
which is less than half that of the free response.
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Fig. 7. System responses and control inputs of the
SDOF system with neural control.
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3.2. TDOF bridge control systems

We consider a TDOF system model of the Aptos
Creek bridge, located on California Highway 1 in the
USA. A more detailed description of this bridge is
provided in [16]. The motion equations are

mle.] +C1X1 +(k1 +k4)x1 +fc(x1,x2) =U —f‘e, (19)
m2)'c'2 +C2X2 +(k2 +k5)X2 —fc(xl,xz)zuz —fe, (20)

where m; and m; are bridge girder masses, ki, k3, k4,
and ks are stiffness coefficients, ¢, and ¢, are damping
coefficients, x| and x, are relative displacements with
respect to m; and my, u; and u; are active control input
forces applied to m; and m», and /. is a nonlinear
spring force between two masses. The mathematical
expression of f. and the values of the bridge system
parameters in (19) and (20) are given in [16]. We
design a neural network controller composed of four
input signals: e;=-x(), Ae;= x1(4—1)-x1(t), er=-x2(2y),
and Aey=x;(ti—1)-x(t), and with the two control
inputs u; and u, as output signals. We use the same
neural network parameters as in the SDOF controller.
As in the SDOF case, we compute the performance
measure (17) to find the optimal number of hidden
neurons. Fig. 8 provides plots of normalized cost
functions versus hidden neurons. Based on the
minimum cost from Fig. 8, we construct a neural
network with 20 hidden neurons. Fig. 9 illustrates
trajectories of the bridge displacements x; and x, with
no active control. From Fig. 9, the total errors are
about 218.51 cm and 69.58 c¢m for x; and x, with
maximum absolute displacements of about 1.22 c¢m
and 0.58 cm, respectively.

The two system displacements and neural control
input forces are plotted in Fig. 10. We observe from
Fig. 10, that the total errors are about 82.95 c¢cm and
30.05 ¢cm for x; and x,, with maximum absolute
displacements are about 0.61 c¢m and 0.22 cm,
respectively. This indicates that neural control
provides an error reduction of 62.04 % and 56.81 %
when compared with the uncontrolled system.
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Fig. 8. Normalized cost for the TDOF system.
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Fig. 10. Systeni responses and control inputs of the
TDOF system with neural control.

4. ROBUSTNESS OF NEURAL
CONTROLLERS

In this section, we consider the robustness of the
neural controllers applied to active bridge control in
Section 3 and simulated with the El Centro earthquake.
For robustness evaluation, we generated a large
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number of earthquake excitations none of which was
used in controller training or evaluation in Section 3.
We then examined the behavior of the bridge active
control systems of Section 3 when subjected to these
excitations.

Case I: In this example, earthquakes with higher
frequencies than El Centro, were applied to the bridge
control system. The time-histories of the earthquake
waveforms are shown in Fig. 11.

The displacement trajectories of the SDOF system
without a control and with a neural control are plotted
in Figs. 12 and 13, respectively. From Figs. 12 and 13,
the total absolute error for an uncontrolled system is
about 35296 cm and the maximum absolute
displacement is about 2.25 ¢m. For a neural control,
the total absolute error is about 131.04 c¢cm and a
maximum absolute error of about 1 cm. A neural
control shows about 62.87 % improvement in total
error over the free response.

We also simulated the TDOF system with the same
earthquake excitation. The displacement trajectories
of the TDOF system without a control are illustrated
in Fig. 14.

From these plots, we observe maximum absolute
displacements for x; and x, of 1.59 cm and 0.58 cm,
respectively, and total system errors of about 278.35
cm and 74.45 cm. Fig. 15 shows the trajectories of the
system using a neural control. We realize that this
result is obviously improved in a control
performances viewpoint. The total errors are 64.90 cm
and 3991 cm for x; and x; respectively with
maximum absolute displacements of about 1.52 cm
and 0.58 cm. Hence, we have a 76.68 % and 46.39 %
improvement over the free response by using active
neural control.

Case II: We simulated the bridge system subject to
earthquake waveforms with larger amplitudes than
case I and with higher frequencies than EI-Centro.
The earthquake signals are created by multiplying
Gaussian random signal with zero mean and unit
variance to El Centro signals. Fig. 16 illustrates time-
histories of the earthquakes.
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Fig. 11. Acceleration history of ground motion in Case .
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Fig. 13. System responses and control inputs of the
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Fig. 14. Uncontrolled system responses of the TDOF
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We simulated the SDOF bridge system with same
simulation conditions as Case 1. Plots of system
trajectories for uncontrolled and neural control
systems are provided in Figs. 17 and 18.

For the uncontrolled system, the maximum absolute
displacement is about 5.01 cm and the total absolute
error is about 687.00 cm. For neural control, the
maximum absolute displacement is about 1.82 ¢m and
the total absolute error is about 182.74 cm. We thus
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have a 73.40% reduction in total error and a 63.67
reduction in absolute value using neural control. The
simulation results for the TDOF system with no active
control are shown in Fig. 19. The results for
uncontrolled systems show total errors of about
630.61 om and 130.62 cm, and maximum
displacements of about 1.97 cm and 1.38 cm for x;
and x,, respectively.
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The trajectories of bridge displacements and control
inputs using neural control are illustrated in Fig. 20.
From Fig. 20, we observe maximum absolute
displacements of about 1.22 cm and 0.93 cm for the
system states x; and x», respectively, and total absolute
displacements of about 82.09 cm and 52.53 cm. The
improvement in absolute error is about 86.98 % for x;
and 59.78 % for x».
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Fig. 20. System responses and control inputs of the
TDOF system with neural control in Case II.

S. CONCLUSION

This paper presents a new neural controller design
particularly suited to the active control of structures.
We seclected an optimal number of hidden layer
neurons based on a performance measure that
provides a compromise between system error and
control input. We applied the neural control to
nonlinear SDOF and TDOF bridge systems subject to
El Centro earthquake. We showed that active neural
control could drastically reduce the maximum
absolute error and the total error from the high levels
of the free system. We also investigated the robustness
of the control systems by applying two different
earthquake excitations to the bridge systems with
same simulation scenarios. The simulations verified
the robustness of the controller performance under a
variety of earthquake excitations. Future work
includes the design of more complicated neural
controllers and their application to nonlinear
structures with uncertain or randomly varying
parameters.
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