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A New Excitation Control for Multimachine Power Systems
I: Decentralized Nonlinear Adaptive Control Design
and Stability Analysis

Haris E. Psillakis and Antonio T. Alexandridis

Abstract: In this paper a new excitation control scheme that improves the transient stability of
multimachine power systems is proposed. To this end the backstepping technique is used to
transform the system to a suitable partially linear form. On this system, a combination of both
feedback linearization and adaptive control techniques are used to confront the nonlinearities.
As shown in the paper, the resulting nonlinear control law ensures the uniform boundedness of
all the state and estimated variables. Furthermore, it is proven that all the error variables are
uniformly ultimately bounded (UUB) i.e. they converge to arbitrarily selected small regions
around zero in finite-time. Simulation tests on a two generator infinite bus power system
demonstrate the effectiveness of the proposed control.

Keywords: Multimachine power system control, adaptive control, backstepping design,

decentralized control.

1. INTRODUCTION

Power systems are continuously growing in size
and complexity with increasing interconnections.
They consist of several generating units while the
power demands vary incessantly. Additionally, small
or large disturbances such as power changes or short-
circuits (faults) may transpire. One of the most crucial
operation demands is the maintenance of system
stability. In particular, when a fault occurs, large
currents and torques are produced and control action
must be taken promptly if system stability is to be
sustained. This is an imperative solution to the power
system transient stability problem defined as that of
assessing whether or not the system will reach an
acceptable steady-state following the fault. However,
power systems are large scale highly nonlinear
systems that include a number of synchronous
machines as producers. One of the main goals of the
excitation control of each machine is the enhancement
of power system stability.

Conventional excitation controllers are mainly
designed by using linear control theory. Especially for
the case of a single machine to infinite-bus power
system, a method that has been extensively used is
one based on the linearization around an operating
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point and the design of linear excitation controllers
[1,2]. The main disadvantages of this design such as
lack of reliability and robustness are well-known.

In the last decade, nonlinear control theory has also
been widely used to account for the nonlinearities of
the controlled power systems [3,4]. The majority of
these controllers are based on the feedback
linearization technique [5]. Feedback linearization is
recently enhanced by using robust control designs
such as H, control and L, disturbance attenuation [6-
12]. In recent years, new approaches have been
proposed for power stability designs according to
other sophisticated schemes such as fuzzy logic
control [13], adaptive control [14,15] and neuro-
control [16-19]. Combinations of the above
techniques are also proposed [20-22] in order to
exploit the advantages of each method under the cost
of the increase in complexity.

In this paper, we consider a multimachine power
system wherein each machine is represented by its
third order nonlinear dynamic model and the
transmission net is described by the admittance matrix.
On this model the well-known backstepping technique
[23,24] is used in order to obtain the most possible
partially linear form of the system. On this form we
use the most simplified feedback linearization scheme
in order to obtain a local feedback control law i.e., a
control law that is dependent from the local
measurable states of the system and a local
measurable variable. Simultaneously, all the other
nonlinearities that are dependent from locally
immeasurable variables or variables that are not states
are left on an unknown nonlinear term. An adaptive
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control mechanism is then used to estimate suitable
bounds of this unknown nonlinear term. Finally, we
propose a nonlinear feedback controller (Theorem 1)
based on both the effective adaptive operation and the
suitable selection of some design constants.

By this control design we prove that the third error
variable is driven in finite-time in a neighborhood of
the origin of arbitrary small dimensions. As soon as
this happens, the other two error variables insert in
finite-time in a sphere around the origin of arbitrarily
small radius (Theorem 2). The boundedness of all
signals is proved. The adaptation mechanism used
belongs to the class of direct adaptive algorithms in
the sense that it guarantees the uniform ultimate
boundness (UUB) of the error variables while the
estimated parameter errors remain bounded.
Furthermore, as ascertained (Theorem 3), the power
angle deviations converge to an even smaller region as
time passes. This is crucial for the selection of the
design constants since it leads to significantly lesser
values for the control gains. Simulation results after a
symmetrical three-phase short circuit fault on a two
machine-infinite bus test system demonstrate the
effectiveness of the proposed scheme.

2. DYNAMIC MODEL

After reducing the multimachine power system into
a network with generator nodes only, the classical
third-order single-axis dynamic generator model is
used for the design of the excitation controller,
whereas differential equations that represent dynamics
with very short time constants have been neglected. In
general, for a n-generator power system, the dynamic
model of the i-th generator is

6;(1)=w; (t) -y, (1)

@ (t) = —%(a),. (t)—w0)+§)4—(1(Pmi ~P,;(1)), (@

£ ()= 7 (En ()£, (1), ®
where

Eqi (1) = Ey ()+(xdi—x&i)1di(f), )

Ep(t)=kyuyz(t), (5)

I;(1)= Z Ey; (Bysin sy (1) + Gy cos 5 (1)), (6)

L (1 Z Ey; (Gysingy; (1) By cossy (1)), (D)

ei( ): qi(t)lqi(t)’ (8)
Qui = Egily (1), €)
Egi(£)=Xaad 5 (1), (10)

Vigi (1) = Egi (¢) = x5l 4 (1) , (1)
Vi (t)=x{ﬁ1qi(t) (12)
()= W () + i (0). (13)

The symbols used in the above equations are
explained in the Appendix.

3. BACKSTEPPING DESIGN

Introducing the first error variable for the i-th
machine

and viewing Aw®; as a virtual control, we define the
second error variable

where ¢;; is a function to be designed.
Consider the first candidate Lyapunov function

14,
= 5 Z Zil . (1 6)
i=1
Then, selecting
a1 (AS;) = —cizy = —cydd;, 7)

where ¢;; >0 is a constant that can be suitably
selected and taking into account that

2i1 = ACUI- 5 (18)
we have
n 2 n
Mi==2 cazi+ D 2z - (19)
i=1 i=1
For the second error variable the dynamics are
. Di Wy ou; i
2 =——+Aw; ——— AP, —— - Aw, 20
PTUM,TTM Y A, (20)

1
Viewing AP,; as a virtual control we introduce the
third error variable

23 = AR, —a (AS;, Aw; ), 2
where «;, is a function to be designed.
For the Lyapunov function

1& 5
Vs :VI+EZZZ‘2 , (22)
inl
we have
n n
; 2
Va=—2 cnzil - Z%)* Zpn23

i=l1 =1 (23)

L D;  day @
+) . zZin |:Zl'1 —(—l + L ]AQ)Z ——=0;) .
Z.Z:l M; 0AS; M,

4 i

If one defines
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M.
a5 (AS;, Aw; ) = ;;‘[Zil +¢i2zip

_ Dl L 9% 6a,1 Aa)i
or equivalently in terms of AS; and Aw@; as

M.
—1(1 + C“Ciz )Aé’l
@ (24)

Mi Di
+— Ci +Ci2 - Aa)ia
@y M;

where ¢;; >0 is a constant that can be arbitrarily

a; (AS;, Aw; ) =

selected, then
= Z cnzi — Zczzzzz z 273 (25)
i= lM
and therefore (24) leads to

oa;,

= —(1 +¢1¢pn )
OAS; 26)
X M. D,
iai = __r cil + Ci2 — _l
OAw; @y M, ).
For the third error variable it holds true that
Z.i3 = f: (t) T/ ( )_
dOl
5 D 27
2| LAg AR |
Aw;| M, M;

where
Ji(1)=Egi (1)1 (1)
_};E[Ez}i (1) + (x4 = x5 M ay (t)]lqi (t)

is obviously a complex nonlinear function. However,
for decentralized control purposes this is an unknown
function since it cannot be reconstructed from the
local i-th machine’s variables. Considering now, the
Lyapunov function

1 n
V3 =V2 +EZZZ-23 5 (28)
i=1

its time derivative results in

) no n 2 7
Vs ==Y cazii — D Cinziy + 9.213 [fi v)
i=1 i=1 i=]

aa

i
i2
—=Aw +——1 u (t)
qi** fi Zi
6A6 Thoi M; (29)
Qo [ Dy AT 20 AP,
OAw; M; :

Using on (27), the feedback linearization technique,
we select the input

Tio:
()=

Ci3Zp3 +2;Z—I;Aa)i + V;
gi i (30)

| D
_jz_lz(; +&APeiH
w; \ M; M; ’

where ¢;3 >0 is a constant that can be suitably
chosen.

4. CONTROLLER DESIGN AND STABILITY
ANALYSIS

The proposed excitation control law of each
machine, for £ =1as it is resulted from (30) is

T
Egp(t)= IdO’(k,1A6 +kpAw; — kAP, +v;),  (31)

qi
where v; =v,(¢) is an arbitrary external input and
the constant gains are given by

M.
iy =—tca(1+cucin) (32)
() ]
M, D. D.
kiZ = a)—olli(ci?, _ﬁll] [Cil + C‘iz — IJIT] + Cilciz + l:l ,(33)
D.
kiz=cip+ep+esz— ﬁl . (34)

1

For this control law, (29) becomes

n n n
_ 2 2 2
Vi==D cuzi— Y cnzh — D Cinzhy
i=1 i=1 i=1

(35)
+Zzl{ Ziy +V; (t)j|

and the z;; -dynamics are as follows

Z’i3 =_Cl'3Zl~3 +Z(t)+vl (t) (36)
Let the function

i

Xgi = Xgi
—— P, - I ()1, (£)-—2 2,
T(Z;Oi el Téo,- di (t) qi (t) M Zj2.

Since the electrical power F,; and the reactive power
Q,; of each generator as well as the electrical power
flow through its transmission line are all bounded and
given that the excitation voltage E; may raise up to 5

times of the E_; when there is no load in the system,
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we can easily establish that there are large enough
unknown positive constants o;, &, &5, &;3 such that

3
<o+ X &lz|, i=L2...n. (39
j=1

Now using adaptive control techniques we derive
estimates for these constants that can be effectively

used in the design of the control law v;(¢) in such a
way that the third error variable z;; converges in

finite-time in an arbitrary small neighborhood of the
origin while all signals remain bounded. Specifically
we will prove the following theorem.

Theorem 1: For the n-machine system described
by equations (1)-(13) under the assumption of (38), let
the excitation input be chosen as in (31) with gains
given by (32)-(34) and v, given by the nonlinear
expression

2
Vi = - PiZn ) 39)
pilzil+1

where /; is a small positive scalar and
3 ~
pi =l = Allznl+6:()+ L& (D) 40)
j=1

with A a constant related to the adaptive control

design through the following estimates’ update laws

: 2/;
&i([)= (Zilzi'_’,l) lf lZi3l>\/%’

41
0, otherwise “1)
;>0 i=12,..,n with 6;(15)20
21
2 7i"zi3zi"= if Izi3|> —
gi' t)= J J ]
i (£) % @)

0, otherwise

711 >0 j=1:2a3 i:1’2,...,7’l, AU(IO)ZO

Then, there exists T; >, such that

‘Zi3(t),s\/%7i VtzT,, i=12,...n (43)

and the other two error variables z;(t),z,(t) are
uniformly bounded for 7e€[#),7;] and the signals
G:(¢)s én(1),  En(t), &3(r) are all uniformly
bounded for ¢>¢,.

Proof: For the i-th subsystem consider the
nonnegative function

T2 T2 2 (44)

+[5i(’)_ai]2 N
2q;

[Aij(f)—éyj]z .

= 27;‘;‘

3
j=

For an excitation input given by egs. (31)-(34) and
update laws given by (41)-(42), the time derivative of
V; for the case wherein

21
|zi3| > Z (45)

is as follows

V= _Cilzizl ~Cinzh - Ci32i23 + 21:3 [fil (1) +v; (’):l

(46)
+[6-i (f) "O-i:||zi3| + i[é (¢) ‘flj] Zi3zi]"-
=
Therefore, the following inequality results
Vi S—cpzh —cnzh — Azh
+’Zi3|[’fi1 (1) ~oi - Zslfij z J +23v(¢)
/= (47)

.
i ]
I

+|Zi3,|:|ﬂ’i —cpllza]+6; (1) +

Aij(’)‘zijﬂ_

Pi

From (38) one can easily see that the fourth term on
the right-hand side of (47) is always nonpositive and
therefore (47) provides the following simplified
inequality

2 2 2
Vi S=cqzit — Cpzin = Aizi3 + 2i3v (1) + 23| oy (48)

Selecting v (¢) as in (39) we arrive at

2.2
V, <Az _&Hzﬂlpi
Pi |Zz'3| + lz‘ (49)
2 lipilZBl
[y A R L .l T
Azl PilZi3|+li ’

However, since from (45) we have —Aizl% <=2l we

result in

Lipi|z| + 1
pilzis| +h;

From (50) it is clear that there exists T} <t +¥;(t,)/l;

it holds true that

v, <21 + =2+l =—1. (50)

such that for every ¢2>7;
|23 (1) <24 /24

20 (1).202 (), 255 (1).6: (£).&, (1) . j=1,2,3 in the
time interval [f,7;] is obvious from the definition of

The uniform boundedness of
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V. in (44). From (41)-(42), it can be seen that for > T;

i
we have that &;(r)= 6;(T;)(i=12,...,n) and
i=12,...,n

& (1) =&;(T;)

(j=12.3,
estimates G; (¢), é (¢) are uniformly bounded for all

) - Hence, the

t21,. 0

Next, we demonstrate that after the third error
variable enters into the chosen neighborhood, the
other two error variables will also enter in finite-time
in a sphere of arbitrary small radius. Actually, the
radius of the sphere is directly related to the length of
the interval, which ultimately bounds the third error
variable. Thus, we prove the following Theorem.

Theorem 2: For the n-machine system defined by
(1)-(13) and the excitation input given by (31)-(34)
and (39)-(42) there exists 7;; =2T,,(i=1,2,...,n) such
that for every ¢t>T; the z;,z, error variables lie
inside the sphere

2
1) [
S=14(z4, Zrzh<| 2 1} L5l
(11 lZ)I i1+ 22 [M mgclzﬁJ ( )
with center the origin and radius

h .52

Ry =
i Mi min{cil,(l—gi)ciz}é‘icﬂ/{l-

where ¢; isadesign constant with 0<g; <I.

Proof: Let the nonnegative function

Z'zl Z-22
v, =2, 52 53
il 7 2 ( )

The dynamics for the z;,z;, variables are given by

Zj =2z — iz
(54)

i wy
Zip =TI Tz __M Zj3

i

and the time derivative of V;; for t2>7; is

2 2 0)0
Vzl_ —CinZj1 —CiaZin — ZppZi3

2 ’
==CiZi — 12212 M ' l2|
(55)

S- llzll Cio (1 1)

lCl)O
—&iCi2 |2i2| 250 M
iti2 2‘9 012/17M

Defining m; =min{c;,c; (1-& )} we have that

2
Loy

Vi <-m (22 +2z5 }+ —10
il i\“il i2 2
281¢p M

(56)

- 2miVil +— % PR
‘c"lciZX‘iMz
. l.op?
Vi < =2m| Vy ——2 | (57)
Am;eicin M
Using the comparison principle [25] we have
lLo?
Vi (l — ._10—2
dm;g;cio M (58)
Lo ~2my (T,
s{vﬂ (Ti)——‘——z} )
4m; g, ;M
~2m;(t=T;) lia)g
Va(t)sVy(T)e " (59)
Amgicn M
Therefore, there exists a Tj
vV (T,
T, =max{T,T, +n @) , (60)
m; @ l;
2M; \ migicip Ay
so that for #>T;; it holds true that
g
Vo ()s—20 (61)
2m;gicin M

i.e. the error variables z;,z;, enter in finite-time
inside the sphere

2

2 2 @y l;
S=3(z1,210) 1 21 + zia 5[ — ]
M; N m;eicindy

with the center as the origin and radius

Wy li
R, =0 . O
! M; \/min{cﬂ’(l & )Ciz} £iCin

Apparently, Theorem 2 directly gives a bound for

o | h VT, (62)

i (0] <2
M m;€iCin Ay

However, as ¢ — oo, Theorem 2 results in a tighter

bound for 1im‘A6l-(t)| as shown by the following
{—>o0

Corollary.

Corollary 1: For the n-machine system defined by
(1)-(13) and the excitation input given by (31)-(34)
and (39)-(42) the following bounds on the angle
deviations hold true
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lim AG, (1) < Ry =20 |t (63)

o Micn \ migicipdy

Proof: Since z;, = Ad; +¢;AS; Theorem 2 gives

0)0 l
el e, 2T
Therefore
. .C()O li
AS; (t JAS (1) — |[—— V2T
z()+czl l() Mi migici2£1‘ i
and (65)
: Dy l;
AS; (t AS (1) 2 ——— |—— V1t 2T..
l( )+CH l( ) M; \ m;gicind; '

Now using Lemma Growan-Bellman [26] we arrive at
AG, (Ti)e—cn(t—Ti)

__P I; (l_e_cil(t_Ti))S A8 (¢)
My \ mgicin Ay

< Aé‘i (Tz )e_cil(t_Ti)

Dy l; (1 _ e_cil(t_Ti)) VT,
)

+
My \ migic;

and taking the limit as ¢t — oo the following bound
occurs

lim [A; (1)] <~ A — 0

Remark 1: Note that for & =1/2 and ¢; >¢;,/2
we have the simple bound form

20, [
lim |AS; (¢)| <« —0— |L 66
ti)n;)‘ l(t)| M,-Cilciz \/; ( )

However, an even superior bound for lim|Ad, ()|
t—w

can be obtained. To this end, the following theorem is
proved.

Theorem 3: For the n-machine system defined by
(1)-(13) and the excitation input given by (31)-(34)
and (39)-(42), the following bounds on the angle
deviations hold true

. 21
lim [AS; (1) S Ry = —— 0 [T (67)
=0 Mi (1+cilci2) /ll

Proof: As t— o the system tends to its steady
state wherein

lim AS; = lim Ad; =0.

t—>o0 t—w0
From (1) and (2) one can directly obtain

lim Aw; () = lim AP, ()=0

{0 >0

and therefore from (21) and (24) we have for z;3

lim z;; (t) = ——A:[i(1 +CiiCin )tlgg A, (t) :

t—w )

Finally, using (43) we obtain the bound for IA&,I as

t—> o0
1) 21,
lim|AS; (¢)| R =———2—— [—-. il
’ggl =R M; (1+epep )\ A
Remark 2: Using the inequality 1/(1+x)

<1/x<2/x
given by (62), (66) and (67) respectively, are proved
to be of decreasing order for the common case where
¢y >1,1.e. Ry>R»>R;.

Remark 3: Comparing the bounds given by
Theorems 2 and 3 it can be easily seen that if the
bound given by Theorem 3 is used, the design results

in smaller values for ¢;,c;, and consequently in

Vx>0, the bounds R,,R,, R

1

smaller values of the control gains &, k;», k;3.
Remark 4: The positive scalars ¢;;,c;, and ¢j3

can be arbitrarily selected with reasonable limits
coming from inequality (67) in accordance to
desirable lim |A5,- , &, and A;.

t—0

5. CASE STUDY

The two generator infinite bus power system shown
in Fig. 1, is used to demonstrate the efficiency of the
proposed controller.

The system parameters are as follows:

xp =0.129 pu. ., xp5=0.11pu., x,=055pu.,

x3=053pu. , x3=0.6pu. , Tj5 =69sec ,
x5 =1.863 pu., x4 =0257 pu., D/ =50pu.,
M;=80sec , M,=102sec , D,=30pu. ,
Xgp =236 pu., x4, =0319 pu., Tjo =7.96sec,
ky=10pu., k=10 pu..

In the simulations, for a more accurate evaluation of
the proposed controller, we take into account the
physical limits of the excitation voltage, which are
considered to be:

kclufl] <50pu., kc2uf2’ <5.0pau.

The following case is simulated.

1£0

Fig. 1. Two machine infinite bus test system.
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Fig. 2. Power angle deviations (in deg) and its
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Fig. 10. Terminal voltage of machine #1.

o5l - S T T S S DO

£

L L L L L . L L .
20 20.5 21 21.5 22 225 23 235 24
time{sec)

Fig. 11. Terminal voltage of machine #2.

Permanent serious fault: A symmetrical three
phase short circuit fault occurs on one of the
transmission lines between Generator #1 and
Generator #2 at ¢ =21.1sec. The fault is removed by
opening the brakers of the faulted line at 7=21.25
sec and the system is restored at ¢ =22 sec. If we use
A to represent the fraction of the fault, simulations
are made for 4=0.6, i.e. for a fault near the middle
of the line and towards Generator #2.

The operating point considered in the simulation is:

510=40",  ¥,,0=0808, P,,=07,
5y0=30",  V,0=0843, P,y =06

The controllers’ parameters are

(531 =5,C'12 =10,C'13 ZSO,}/I =10,21 250,6‘1 20001,
Cr1 :5,022 :10,023 :50,}/2 :10,/7.2 :50,62 =0.001.

The simulation results are given in Figs. 2 to 11. The
response of the system appears to be very satisfactory
since it does not have undesirable oscillations or
overshoots. The system maintains stability after the
transient period and returns to the nominal frequency
very quickly. This is not an unexpected situation due
to the nonlinear action of the proposed excitation
control.

6. CONCLUSIONS

The proposed controller is completely decentralized
with a rather simple structure

E, (1)= ?Oi (KyAS; + KppAw; — K3AP,; —v;),
qi

where the nonlinear input term v, is given by

2
Sz,
v, =— Pi i3

P = (see Theorem 1) with z; =AP,
pilzi3[+li

i

—%(1 +c;1¢ ) A, —%[cﬂ +ep — &jAwi and

@ @ M,
constant gains given by (32)-(34).

The proposed control scheme involves only local
measurements of P,;, w;, J; and the current /,; that can
be calculated from the measurements.

As it is shown by an extensive analysis this control
scheme ensures stability while it permits the selection
of the control parameters in such a way that a trade-
off between the gain values and the region width R;; is
obtained.

APPENDIX
The nomenclature used is as follows.

8;(t): power angle, in radian; w;(r):rotor speed,

in rad/sec; a@,: synchronous machine speed, in
rad/sec; P,;: mechanical input power, in p.u;

P, (t): active electrical power, in p.u.; D;: damping

constant, in p.u; M;: inertia coefficient, in seconds;

(E,;(t): transient EMF in the g-axis in pu; E(¢):

q
EMF in the g-axis, in p.u; Ej;(¢): equivalent EMF in
excitation coil, in p.u.; Ty : d-axis transient short
circuit time constant, in seconds; /g (¢): excitation

current, in p.u.; Iq,-(t): g-axis current, in p.u.;

Idi (t)
electrical power, in p.u.; V,;(¢): generator terminal

d-axis current, in pu; Q,(f): reactive

voltage, in p.u.; k,;: gain of generator excitation
amplifier, in p.u; ug(¢): input of the SCR amplifier,
in p.u.; xy : d-axis transient reactance, in p.u.; xg :
d-axis reactance, in p.u; Xx,4: mutual reactance
between the excitation coil and the stator coil, in p.u.;
Yij- = Gij + JBj the ith row and jth column element of
nodal admittance matrix, in pu; AS; =6, — 5 ;
Aw; =0; —awy; AR, =F; —Fy; .
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