D-Amphetamine Causes Dual Actions on Catecholamine Release from the Rat Adrenal Medulla

  • Lim, Geon-Han (Departments of Neurology, College of Medicine, Chosun University) ;
  • Na, Gwang-Moon (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Min, Seon-Young (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Seo, Yoo-Seok (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Park, Chan-Won (Departments of Pharmacology, College of Medicine, Chosun University) ;
  • Lim, Dong-Yoon (Departments of Pharmacology, College of Medicine, Chosun University)
  • Published : 2005.02.21

Abstract

The present study was designed to examine the effect of d-amphetamine on CA release from the isolated perfused model of the rat adrenal gland, and to establish its mechanism of action. Damphetamine $(10{\sim}100{\mu}M$), when perfused into an adrenal vein of the rat adrenal gland for 60 min, enhanced the CA secretory responses evoked by ACh ($5.32{\times}10^{-3}$ M), excess $K^+$ ($5.6{\times}10^{-2}$ M, a membrane depolarizer), DMPP ($10^{-4}$ M, a selective neuronal nicotinic $N_n-receptor$ agonist) and McN-A-343 ($10^{-4}$ M, a selective $M_1-muscarinic$ agonist) only for the first period (4 min), although it alone has weak effect on CA secretion. Moreover, d-amphetamine ($30{\mu}M$) in to an adrenal vein for 60 min also augmented the CA release evoked by BAY-K-8644, an activator of the dihydropyridine L-type $Ca^{2+}$ channels, and cyclopiazonic acid, an inhibitor of cytoplasmic $Ca^{2+}$ ATPase only for the first period (4 min). However, in the presence of high concentration ($500{\mu}M$), d-amphetamine rather inhibited the CA secretory responses evoked by the above all of secretagogues. Collectively, these experimental results suggest that d-amphetamine at low concentrations enhances the CA secretion from the rat adrenal medulla evoked by cholinergic stimulation (both nicotininc and muscarinic receptors) as well as by membrane depolarization, but at high concentration it rather inhibits them. It seems that d-amphetamine has dual effects as both agonist and antagonist at nicotinic receptors of the isolated perfused rat adrenal medulla, which might be dependent on the concentration. It is also thought that these actions of d-amphetamine are probably relevant to the $Ca^{2+}$ mobilization through the dihydropyridine L-type $Ca^{2+}$ cha$N_n$els located on the rat adrenomedullary chromaffin cell membrane and the release of $Ca^{2+}$ from the cytoplasmic store.

Keywords

References

  1. Akaike A, Mine Y, Sasa M, Takaori S. Voltage and current clamp studies of muscarinic and nicotinic excitation of the rat adrenal chromaffin cells. J Pharmacol Expt Ther 255: 333-339, 1990
  2. Amador M, Dani JA. MK-801 inhibition of nicotinic acetylcholine receptor channels. Synapse 7: 207-215, 1991 https://doi.org/10.1002/syn.890070305
  3. Andersen PH. Biochemical and pharmacological characterization of $[^3H]$GBR 12935 binding in vitro to rat striatal membranes: labeling of the dopamine uptake complex. J Neurochem 48: 1887-1899, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb05752.x
  4. Anton AH, Sayre DF. A study of the factors affecting the aluminum oxide trihydroxy indole procedure for the analysis of catecholamines. J Pharmacol Exp Ther 138: 360-375, 1962
  5. Barrantes FJ, Antollini S, Massol R. Fluorescence studies of the nicotinic acetylcholine receptor in its membrane environment. Biosci Rep 19: 335-344, 1999 https://doi.org/10.1023/A:1020247802798
  6. Bowyer JF, Masserano JM, Weiner N. Inhibitory effects of d-amphetamine on potassium-stimulated release of $[^3H]$dopamine from striatal slices and synaptosomes J Pharmacol Exp Ther 240: 177-186, 1987
  7. Bouzat C. Ephedrine blocks wild-type and long-lived mutant acetylcholine receptor channels. Neuroreport 8: 317-321, 1996 https://doi.org/10.1097/00001756-199612200-00063
  8. Burgoyne RD. Mechanism of secretion from adrenal chromaffin cells. Biochem Biophys Acta 779: 201-216, 1984 https://doi.org/10.1016/0304-4157(84)90009-1
  9. Burnette WB, Bailey MD, Kukoyi S, Blakely RD, Trowbridge CG, Justice Jr JB. Human norepinephrine transporter kinetics using rotating disk electrode voltammetry. Anal Chem 68: 2932-2938, 1996 https://doi.org/10.1021/ac960022x
  10. Catterall WA. Structure and regulation of voltage-gated $Ca^{2+}$ channels. Annu Rev Cell Dev Biol 16: 521-555, 2000 https://doi.org/10.1146/annurev.cellbio.16.1.521
  11. Challis RAJ, Jones JA, Owen PJ, Boarder MR. Changes in inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate mass accumulations in cultured adrenal chromaffin cells in response to bradykinin and histamine. J Neurochem 56: 1083-1086, 1991 https://doi.org/10.1111/j.1471-4159.1991.tb02033.x
  12. Cheek TR, Burgoyne RD. Cyclic AMP inhibits both nicotine-induced actin disassembly and catecholamine secretion from bovine adrenal chromaffin cells. J Biol Chem 262:11663-11666, 1987
  13. Cheek TR, O'Sullivan AJ, Moreton RB, Berridge MJ, Burgoyne RD. Spatial localization of the stimulus-induced rise in cytosolic $Ca^{2+}$ in bovine adrenal chromaffin cells: Distinct nicotinic and muscarinic patterns. FEBS Lett 247: 429-434, 1989 https://doi.org/10.1016/0014-5793(89)81385-7
  14. Chen Y, Ogren, SO, Bjelke B, Bolme P, Eneroth P, Gross J, Loidl F, Herrera-Marschitz M, Andersson K. Nicotine treatment counteracts perinatal asphyxia-induced changes in the mesotriatal/ limbic dopamine systems and in motor behaviour in the fourweek- old male rat. Neuroscience 68: 531-538, 199512693 https://doi.org/10.1016/0306-4522(95)00118-3
  15. Dilger JP, Boguslavsky R, Barann M, Katz T, Vidal AM. Mechanisms of barbiturate inhibition of acetylcholine receptor channels. J Gen Physiol 109: 401-414. 1997 https://doi.org/10.1085/jgp.109.3.401
  16. Gandia L, Borges R, Albillos A, Garcia AG. Multiple calcium channel subtypes in isolated rat chromaffin cells. Pflugers Arch 430: 55-63, 1995 https://doi.org/10.1007/BF00373839
  17. Garcia AG, Sala F, Reig JA, Viniegra S, Frias J, Fonteriz R, Gandia L. Dihydropyridine Bay-K-8644 activates chromaffin cell calcium channels. Nature 309: 69-71, 1984 https://doi.org/10.1038/309069a0
  18. Goeger DE, Riley RT. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on $Ca^{2+}$ binding and $Ca^{2+}$ permeability. Biochem Pharmacol 38: 3995-4003, 1989 https://doi.org/10.1016/0006-2952(89)90679-5
  19. Hammer R, Giachetti A. Muscarinic receptor subtypes: $M_1$ and $M_2$ biochemical and functional characterization. Life Sci 31: 2992-2998, 1982
  20. Harish OE, Kao LS, Raffaniello R, Wakade AR, Shneider AS. Calcium dependence of muscarinic receptor-mediated catecholamine secretion from the perfused adrenal medulla. J Neurochem 48: 1730-1735, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb05730.x
  21. Hernandez-Guijo JM, Gandia L, de Pascual R, Garcia AG. Differential effects of the neuroprotectant lubeluzole on bovine and mouse chromaffin cell calcium channel subtypes. Br J Pharmacol 122: 275-285, 1997 https://doi.org/10.1038/sj.bjp.0701364
  22. Hurd YL, Ungerstedt U. $Ca^{2+}$ dependence of the d-amphetamine, nomifensine and Lu 19-005 effect on in vivo dopamine transmission. Eur J Pharmacol 166: 261-269, 1989 https://doi.org/10.1016/0014-2999(89)90067-8
  23. Ilno M. Calcium-induced calcium release mechanism in guinea pig taenia caeci. J Gene Physiol 94: 363-383, 1989 https://doi.org/10.1085/jgp.94.2.363
  24. Inoue M, Kuriyama H. Muscarinic receptor is coupled with a cation channel through a GTP-binding protein in guinea-pig chromaffin cells. J Physiol (Lond) 436: 511-529, 1991 https://doi.org/10.1113/jphysiol.1991.sp018564
  25. Karler R, Calder LD, Bedingfield JB. A novel nicotiniccholinergic role in behavioral sensitization to d-amphetamine-induced stereotypy in mice. Brain Res 725: 192-198, 1996 https://doi.org/10.1016/0006-8993(96)00248-X
  26. Kim KT, Westhead EW. Cellular responses to $Ca^{2+}$ from extracellular and intracellular sources are different as shown by simultaneous measurements of cytosolic $Ca^{2+}$ and secretion from bovine chromaffin cells. Proc Natl Acad Sci USA 86: 9881-9885, 1989.507 https://doi.org/10.1073/pnas.86.24.9881
  27. Kimura T, Shimamura T, Satoh S. Effects of pirenzepine and hexamethonium on adrenal catecholamine release in responses to endogenous and exogenous acetylcholine in anesthetized dogs. J Cardiovasc Pharmacol 20: 870-874, 1992 https://doi.org/10.1097/00005344-199212000-00004
  28. Knepper SM, Grunewald GL, Rutledge CO. Inhibition of norepinephrine transport into synaptic vesicles by d-amphetamine analogs. J Pharmacol Exp Ther 247: 487-494, 1988
  29. Kujacic M, Carlsson A. Influence of GBR 12909 and d-amphetamine on indices of catecholamine synthesis and release in rat adrenal glands. Neuropharmacology 33: 983-987, 1994 https://doi.org/10.1016/0028-3908(94)90156-2
  30. Ladona MG, Aunis D, Gandia AG, Garcia AG. Dihydropyridine modulation of the chromaffin cell secretory response. J Neurochemstry 48: 483-490, 1987 https://doi.org/10.1111/j.1471-4159.1987.tb04118.x
  31. Laruelle M, Abi-Dargham A, van Dyck C, Gil R, D'Souza DC, Krystal J, Seibyl J, Baldwin R, Innis R. Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [123]beta-CIT. Biol Psychiatry 47: 371-379, 2000 https://doi.org/10.1016/S0006-3223(99)00257-7
  32. Lim DY, Hwang DH. Studies on secretion of catecholamines evoked by DMPP and McN-A-343 in the rat adrenal gland. Korean J Pharmacol 27: 53-67, 1991
  33. Lim DY, Kim CD, Ahn KW. Influence of TMB-8 on secretion of catecholamines from the perfused rat adrenal glands. Arch Pharm Res 15: 115-125, 1992 https://doi.org/10.1007/BF02974085
  34. Liu PS, Liaw CT, Lin MK, Shin SH, Kao LS, Lin LF. Damphetamine enhances $Ca^{2+}$ entry and catecholamine release via nicotinic receptor activation in bovine adrenal chromaffin cells. Eur J Pharmacol 460: 9-17, 2003 https://doi.org/10.1016/S0014-2999(02)02870-4
  35. Mahata M, Mahata SK, Parmer RJ, O'Connor DT. Vesicular monoamine transport inhibitors. Novel action at calcium channels to prevent catecholamine secretion. Hypertension 28: 414- 420, 1996 https://doi.org/10.1161/01.HYP.28.3.414
  36. Mercuri NB, Calabresi P, Bernardi G. The mechanism of damphetamine- induced inhibition of rat substantia nigra compacta neurones investigated with intracellular recording in vitro. Br J Pharmacol 98: 127-134, 1989 https://doi.org/10.1111/j.1476-5381.1989.tb16872.x
  37. Milone M, Engel AG. Block of the endplate acetylcholine receptor channel by the sympathomimetic agents ephedrine, pseudoephedrine, and albuterol. Brain Res 740: 346-352, 1996 https://doi.org/10.1016/S0006-8993(96)00894-3
  38. Misbahuddin M, Oka M. Muscarinic stimulation of guinea pig adrenal chromaffin cells stimulates catecholamine secetion without significant increase in $Ca^{2+}$ uptake. Neurosci Lett 87: 266-270, 1988 https://doi.org/10.1016/0304-3940(88)90459-4
  39. Mundorf ML, Hochstetler SE, Wightman RM. Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J Neurochem 73: 2397-2405, 1999 https://doi.org/10.1046/j.1471-4159.1999.0732397.x
  40. Nakazato Y, Oleshanskly M, Tomita U, Yamada Y. Voltageindependent catecholamine release mediated by the activation of muscarinic receptors in guinea-pig adrenal glands. Br J Pharmacol 93: 101-109, 1988 https://doi.org/10.1111/j.1476-5381.1988.tb11410.x
  41. Oka M, Isosaki M, Yanagihara N. Isolated bovine adrenal medullary cells: studies on regulation of catecholamine synthesis and release. In: Usdin E, Kopin IJ, Brachas J ed, Catecholamines: Basic and Clinical frontiers. Pergamon Press, Oxford, p 70-72, 1979
  42. Pierce RC, Kalivas PW. Repeated cocaine modifies the mechanism by which d-amphetamine releases dopamine. J Neurosci 17: 3254-3262, 1997
  43. Pifl C, Drobny H, Reither H, Hornykiewicz O, Singer EA. Mechanism of the dopamine-releasing actions of d-amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 47: 368-373, 1995
  44. Pifl C, Agneter E, Drobny H, Sitte HH, Singer EA. D-amphetamine reverses or blocks the operation of the human noradrenaline transporter depending on its concentration: superfusion studies on transfected cells. Neuropharmacology 38: 157-165, 1999 https://doi.org/10.1016/S0028-3908(98)00155-5
  45. Raiteri M, Bertollini A, Angelini F, Levi G. Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. J Pharmacol Exp Ther 208: 195-202, 1979
  46. Richter JA, Bare DJ, Yu H, Ghetti B, Simon JR. Dopamine transporter-dependent and independent endogenous dopamine release from weaver mouse striatum in vitro. J Neurochem 64: 191-198, 1995 https://doi.org/10.1046/j.1471-4159.1995.64010191.x
  47. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ. Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237: 1219-1223, 1987 https://doi.org/10.1126/science.2820058
  48. Schneider FH. D-amphetamine-induced exocytosis of catecholamines from the cow adrenal medulla. J Pharmacol Exp Ther 183: 80-89, 1972
  49. Schramm M, Thomas G, Towart R, Franckowiak G. Novel dihydropyridines with positive inotropic action through activation of $Ca^{2+}$ channels. Nature 303: 535-537, 1982 https://doi.org/10.1038/303535a0
  50. Seiden LS, Sabol KE, Ricaurte GA. D-amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33: 639-677, 1993 https://doi.org/10.1146/annurev.pa.33.040193.003231
  51. Seidler NW, Jona I, Vegh N, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the $Ca^{2+}$-ATPase of sarcoplasimc reticulum. J Biol Chem 264: 17816-17823, 1989
  52. Sitte HH, Huck S, Reither H, Boehm S, Singer EA, Pifl C. Carrier-mediated release, transport rates, and charge transfer induced by d-amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem 71: 1289-1297, 1998 https://doi.org/10.1046/j.1471-4159.1998.71031289.x
  53. Skau KA, Gerald MC. D-amphetamine inhibition of alpha-bungarotoxin binding at the mouse neuromuscular junction. Life Sci 20: 1495-1499, 1977 https://doi.org/10.1016/0024-3205(77)90440-4
  54. Spitzmaul GF, Esandi MC, Bouzat C. D-amphetamine acts as a channel blocker of the acetylcholine receptor. Neuroreport 10: 2175-2181, 1999 https://doi.org/10.1097/00001756-199907130-00032
  55. Sulzer D, Chen TK, Lau YY, Kristensen H, Rayport S, Ewing A. D-amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15: 4102-4108, 1995
  56. Suzuki M, Muraki K, Imaizumi Y, Watanabe M. Cyclopiazonic acid, an inhibitor of the sarcoplasmic reticulum $Ca^{2+}$ -pump, reduces $Ca^{2+}$ -dependent $K^{+}$ currents in guinea-pig smooth muscle cells. Br J Pharmacol 107: 134-140, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14475.x
  57. Tallarida RJ, Murray RB. Manual of pharmacologic calculation with computer programs. 2nd ed. Speringer-Verlag, New York, p 132, 1987
  58. Uceda G, Artalejo AR, de la Fuente MT, Lopez MG, Albillos A, Michelena P, Garcia AG, Montiel C. Modulation by L-type $Ca^{2+}$ channels and apamin-sensitive $K^{+}$ channels of muscarinic responses in cat chromaffin cells. Am J Physiol 266(5 Pt 1): C1432-1439, 1994py=19 https://doi.org/10.1152/ajpcell.1994.266.5.C1432
  59. Uyama Y, Imaizumi Y, Watanabe M. Effects of cyclopiazonic acid, a novel $Ca^{2+}$-ATPase inhibitor on contractile responses in skinned ileal smooth muscle. Br J Pharmacol 106: 208-214, 1992 https://doi.org/10.1111/j.1476-5381.1992.tb14316.x
  60. Wada Y, Satoh K, Taira N. Cardiovascular profile of Bay-K-8644, a presumed calcium channel activator in the dog. Naunyn- Schmiedebergs Arch Pharmacol 328: 382-387, 1985 https://doi.org/10.1007/BF00692905
  61. Wakade AR. Studies on secretion of catecholamines evoked by acetylcholine or transmural stimulation of the rat adrenal gland. J Physiol 313: 463-480, 1981 https://doi.org/10.1113/jphysiol.1981.sp013676
  62. Wayment H, Meiergerd SM, Schenk JO. Relationships between the catechol substrate binding site and d-amphetamine cocaine and mazindol binding sites in a kinetic model of the striatal transporter of dopamine in vitro. J Neurochem 70: 1941-1949, 1998 https://doi.org/10.1046/j.1471-4159.1998.70051941.x
  63. Wu X, Gu HH. Molecular cloning of the mouse dopamine transporter and pharmacological comparison with the human homologue. Gene 233: 163-170, 1999 https://doi.org/10.1016/S0378-1119(99)00143-2
  64. Yamada Y, Teraoka H, Nakazato Y, Ohga A. Intracellular $Ca^{2+}$ antagonist TMB-8 blocks catecholamine secretion evoked by caffeine and acetylcholine from perfused cat adrenal glands in the absence of extracellular$Ca^{2+}$. Neurosci Lett 90: 338-342, 1988 https://doi.org/10.1016/0304-3940(88)90212-1