Web-Based Forecasting System for Flood Runoff with Neural Network

Dong-guk Hang, Kye-won Jun

Abstract

The forecasting of flood runoff in the river is essential for flood control. The purpose of this study is to test a development of system for flood runoff forecasting using neural network model. For the flood events the tested rainfall and runoff data were the input to the input layer and the flood runoff data were used in the output layer. To choose the forecasting model which would make up of runoff forecasting system properly, real-time runoff in the river when flood periods were forecasted by using the neural network model and the state-space model. A comparison of the results obtained by the two forecasting models indicated the superiority and reliability of the neural network model over the state-space model. The neural network model was modified to work in the Web and developed to be the basic model of the forecasting system for the flood runoff.

Key words : Neural network, flood runoff, web-based, state space

1. 서론

최근 우리나라의 이상기후와 국지적 균형상태 호우 및 태풍 등에 의한 많은 피해가 발생하고 있다. 그러나 자연현상에 의해 유역에서 발생하는 수문기상학적 요소들은 시간적, 공간적으로 변동이 심하게 유역의 특성인들의 복잡성 때문에 환경에서의 예측량을 정확히 예측하고 예측한다는 것이 매우 어려운 문제이다. 경로에 의한 유출경로로부터 하천유출량은 예측하기 위한 물리적, 경제적 접근방법에 의한 연구들이 진행되어 왔으나 자료의 비정형성과 불확실성에 의하여 많은 이슈를 겪고 있으며, 유역을 시스템으로 해석할 수 있도록 해석적, 예측적 분석에 의한 연구를 통해 빠르고 반복적으로 높은 유출량을 발생시키고 있는 연구가 요구되고 있다.

지능형 모델 중에 신경회로망의 이론은 인간의 논리형태의 복잡한 자료를 변형처리 할 수 있고 학습능력이 있는 신경모델을 새로운 폐쇄적 뉴런망을 이용한 방법으로 제안되었으며, 특히 1990년 이후부터 신경회로망 이론을 이용해 유출현상을 예측하는 많은 연구가 발표되었다[1][2][3]. 시공간분포를 신경회로망모형의 입출력 자료로 구성하여 강우의 공간분포를 예측하거나 강우-유출 과정에 대해 신경회로망등에 ARMAX 모형, SAC-SMA 모형을 적용하였다[4][5]. 그리고 신경회로망 모형은 실시간 홍수위 예측, 하천유역의 홍수조절을 위한 공간적결정 시스템 개발, 지형을 고려한 유역유출예측에 적용하였다[6][7][8]. 그러나 기존 연구의 경우는 실제 실수에 적용하여 홍수수치에 민감성을 확보하는 것이 어려우나 각 연구가 미흡한 본 연구에서는 실수에 직접 적용 할 수 있는 기본적인 홍수예정 및 경보 시스템을 구축하고자 한다.

홍수시 홍수피해의 중소이고 국민들의 안전을 확보하기 위해서는 기상과 유출예측기술을 활용하여 실시간 홍수예정 및 경보 시스템이 구축되어야 한다. 그러나 현재의 홍수예측 체제는 물관리 기관을 대상으로 신체적으로 향상시키는 데 필요한 정 리하여 D/B를 활용하는 수준에 머무르고 있어 실질적인 정보의 활용과 해석 및 실시간적인 예측기술을 수행할 수 있는 시스템의 개발이 요구되고 있다. 또한 물관리를 위해 수집된 정보 및 예측된 정보를 옮기기 위해 정보시스템 및 지리정보시스템에게 개방하여 대안화장성에 중점을 필요가 있다.

따라서, 본 연구에서는 지능형 모형의 신경회로망 모형을 이용해서 홍수운출 예측을 수행할 수 있는 시스템을 개발하기 위해 상용화된 페어를 사용하지 않고 직접 소스코드를 개발하여 모델링을 수행하였으며, 개발된 신경회로망 모형을
3. 신경회로형 모형의 적용

3.1 모형의 구성

홍수예측을 위한 신경회로형 모형의 구조를 결정하기 위해 강우량 자료와 유출량 자료의 시계열 특성을 분석하였다. 분석방법으로는 자료계획의 헐정성을 갖는 개개 유출량과 강우량의 시계열 자료는 서로 독립적이지 않으나 의존적인 연계성을 보여, 자료간 관계를 판단하기 위해 자기상관함수를 구하였다. 신경회로형 모형의 구축을 위해 입력으로 사용하는 강우요소를 상호관계가 있는 것을 분석하는 교차상관함수를 구하여 예측 모형을 구성하였다. 그림 1에서는 강우량-유출량의 교차상관 분석을 나타내었으며, 그림 2에서는 유출량에 대한 자기상관분석을 수행한 결과를 도시하였다.

![그림 1. 강우량과 유출량의 교차상관 분석](image1)

![그림 2. 유출량에 대한 자기상관 분석](image2)
3.3 홍수유출 예측모형의 검증

학습을 통해 정성된 신경회로망 모형을 이용하여 2000년 3개의 주요호우사상(casel1 ~ case13)에 의한 홍수유출량 예측을 수행하였다. 그리고 구성모형의 적용성을 검증하기 위해 상태공간 모형과 비교하여 구성모형의 예측력을 검증하였다. 그림 4-5는 각 지정별 신경회로망 모형과 상대공간 모형의 비교를 드러내는 홍수유출 예측결과를 나타내고 있다. 또한 표 2에는 각 모형별 홍수유출예측 결과에 대한 분석결과를 나타내었다.

공주지점은 상태공간 모형의 경우 case11~case13의 예측결과 신경회로망 모형의 MANN II 모형에 비해 RMSE 및 VE가 우수한 예측력을 보였으나 신경회로망 모형인 MANN I 모형에 비해 예측력은 떨어지는 것으로 분석되었다. case11 ~ case13 사상의 경우 전체적으로 상태공간 모형은 예측 결과의 R² 및 MF, VE 값은 적은 값을 나타내며 신경회로망 모형과 함께 예측력이 우수한 결과를 얻었다. 그러나 수문국의 첨단의 예측과 과도에 대한 검증이 이루어져 공주지점의 최적 예측 모형으로는 R²가 0.9896 ~ 0.9946, RMSE가 48.2968 ~ 94.3323 m³/sec의 범위이며, MF가 0.389 1% ~ 4.2323%, VE가 1.7924% ~ 3.4644% 범위로 분석된 신경회로망 모형인 MANN I 모형을 최종 홍수유출 예측모형으로 선정하였다.

표 1. 신경회로망 모형의 학습결과

<table>
<thead>
<tr>
<th>모형</th>
<th>Network 구성</th>
<th>RMSE (m³/sec)</th>
<th>CC</th>
<th>MF(%)</th>
<th>VE(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANN I</td>
<td>15-15-1</td>
<td>104.3164</td>
<td>0.9866</td>
<td>5.0243</td>
<td>2.3364</td>
</tr>
<tr>
<td></td>
<td>15-30-1</td>
<td>89.0434</td>
<td>0.9690</td>
<td>0.7095</td>
<td>0.8928</td>
</tr>
<tr>
<td></td>
<td>15-45-1</td>
<td>91.4695</td>
<td>0.8900</td>
<td>2.9093</td>
<td>3.1278</td>
</tr>
<tr>
<td></td>
<td>15-60-1</td>
<td>93.2345</td>
<td>0.8875</td>
<td>3.2135</td>
<td>3.5286</td>
</tr>
<tr>
<td></td>
<td>8-8-1</td>
<td>132.7307</td>
<td>0.9777</td>
<td>6.1901</td>
<td>1.4612</td>
</tr>
<tr>
<td></td>
<td>8-16-1</td>
<td>113.5512</td>
<td>0.9872</td>
<td>2.3435</td>
<td>2.6286</td>
</tr>
<tr>
<td></td>
<td>8-24-1</td>
<td>117.0961</td>
<td>0.9828</td>
<td>3.3119</td>
<td>2.1229</td>
</tr>
<tr>
<td></td>
<td>8-32-1</td>
<td>125.3546</td>
<td>0.9788</td>
<td>3.4562</td>
<td>3.4561</td>
</tr>
</tbody>
</table>

[Note] RMSE: Root Mean Square Error, CC: Correlation Coefficient, MF: percent error of Maximum Flow, VE: percent Volume Error

Fig. 3. MANN I 모형의 구성

Fig. 4. Comparison of flood runoff forecasting models

Fig. 5. Comparison of flood runoff forecasting models
表 2. 모형의 예측결과 분석

<table>
<thead>
<tr>
<th>저작</th>
<th>사항</th>
<th>모형</th>
<th>Network 구성</th>
<th>R^2</th>
<th>RMSE (m/sec)</th>
<th>VE (%)</th>
<th>MF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Case 11 (2000) 7</td>
<td>MANN I</td>
<td>15-30-1</td>
<td>0.9593</td>
<td>48.2988</td>
<td>3.4644</td>
<td>0.5891</td>
<td></td>
</tr>
<tr>
<td>Case MANN II</td>
<td>8-16-1</td>
<td>0.9467</td>
<td>132.0830</td>
<td>6.0363</td>
<td>1.6237</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case State Space</td>
<td>1.2</td>
<td>0.9870</td>
<td>74.2154</td>
<td>2.5366</td>
<td>5.4648</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 12 (2000) 8</td>
<td>MANN I</td>
<td>15-30-1</td>
<td>0.9806</td>
<td>94.3323</td>
<td>2.6783</td>
<td>4.057</td>
<td></td>
</tr>
<tr>
<td>Case MANN II</td>
<td>8-16-1</td>
<td>0.932</td>
<td>84.8542</td>
<td>1.2936</td>
<td>4.8741</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case State Space</td>
<td>1.2</td>
<td>0.9854</td>
<td>94.9032</td>
<td>5.8266</td>
<td>4.066</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case 13 (2000) 9</td>
<td>MANN I</td>
<td>15-30-1</td>
<td>0.9946</td>
<td>84.4564</td>
<td>1.7524</td>
<td>4.2323</td>
<td></td>
</tr>
<tr>
<td>Case MANN II</td>
<td>8-16-1</td>
<td>0.9933</td>
<td>94.9179</td>
<td>3.1726</td>
<td>6.0844</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case State Space</td>
<td>1.2</td>
<td>0.9986</td>
<td>112.2803</td>
<td>4.8070</td>
<td>4.068</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Web기반 홍수유출 예측시스템 개발

4.1 시스템의 구성 및 설계

기초적인 Web기반 홍수유출 예측시스템을 구성하기 위해 본 연구에서는 시스템의 기존 구성을 클라이언트-서비 모델 (Client-Server Model)로 개발하였다. 클라이언트에서 사용자가 정보를 입력하고 수행할 명령을 서버에 전달하게 되는 시스템으로서 서버는 전달받은 명령과 정보에 따라 작업을 수행하고 결과를 클라이언트에 전송한다. 클라이언트는 웹브라우저를 통해 최종 처리 결과를 사용자에게 표시하는 형태로 구성한다. 홍수유출 예측을 위한 시스템의 설계에 유량예측 모델은 학습, 검증 및 예측 기능을 갖추고 있으나 검증 기능은 예측 기능과 비슷하게 별도로 설계하지 않았다. 또한 각각의 모델은 신경회로망 모형과 입력 데이터는 다르지만 처리순서나 신경회로망 구성 방식이 동일하여 하나의 공통된 모델로 간주하고 프로그램을 설계하였다. 학습단계에서는 사용자의 입력에 따라 각 지점별로 학습을 수행하게 설정되었으며 학습시 최대 학습 횟수보다 적거나 학습된 결과가 최대 오차 범위내에 놓일 때 학습을 중지한다. 이렇게 n개의 입력 데이터에 반복하여 학습하고 학습이 모두 끝나면 신경회로망 가중치를 데이터에 저장한다. 예측단계의 경우는 학습단계와 유사한 과정으로 설계되나 신경회로망 생성 후 신경회로망 연결가중치를 임의의 범위로 설정하지 않고 가중치 데이터를 열어서 설정한다. 또한 학습단계와 큰 차이는 예측 데이터에 정규화 되어 있기 때문에 여러 정보를 이용하여 예측 데이터를 보정한다는 것이다. 그림 6는 예측단계의 프로그램 처리 순서도를 간략히 나타내고 있다.

4.2 홍수유출 예측시스템의 구현 및 시험

신경회로망 모형을 이용하여 Web상에서 홍수유출 예측이 가능한 예측시스템을 개발하였다. 개발된 홍수유출 예측시스템은 기본자료 검색 모듈과 학습 및 예측모듈 등으로 크게 구성되어 있다. 그림 7~8은 개발된 시스템의 기본화면을 나타내고 있다. 개발된 신경회로망 모형을 이용하여 Web상에서 유출예측 모듈을 구성하고 급강수역 공주지점의 학습, 검증 및 예측을 수행하였다. Web상에서 학습을 수행한 후 예측에 사용되지 않았던 2002년 8월 6일-2002년 8월 10일 (case14) 사항과 2002년 8월 31일-2002년 9월 7일 (case15) 사항을 이용하여 실제로 실행된 신경회로망의 예측능력을 시험하였다. 그 결과 Web에서 구축된 유출예측 시스템은 시간 호우사상을 의한 홍수유출량을 약간 과대 예측하였다. 그러나 홍수 - 영 buz 정보 측면에서 볼 때 폭우시의 경우를 감안하면 비교적 잘 예측되었다고 판단된다. 그림 9와 그림 10은 설계된 예측시스템의 시험결과를 나타내고 있다。

그림 6. 예측단계의 처리도

Fig. 6. Data flow diagram of forecasting step

그림 7. 예측모듈의 기본화면

Fig. 7. Base screen of forecasting module

그림 8. 검색모듈의 기본화면

Fig. 8. Base screen of searching module
5. 결론

본 연구에서는 홍수유출 예측시스템을 개발하기 위해 신경회로망 모형을 이용하여 예측모형을 구성하고 예측력을 점검한 후 Web상에서 홍수유출 예측을 수행할 수 있는 기초적인 시스템을 개발하여 예측치의 활용성을 높이고자 연구를 수행하였다. 그 결과 홍수유출 예측을 위해 구성된 신경회로망 모형은 학습과정에 입력자료의 수가 15개, 은닉층 노드수가 16개, 출력층의 자료수가 1개인 MANN I (15·30·1) 모형과 입력자료의 수가 8개, 은닉층 노드수가 16개, 출력층의 자료수가 1개인 MANN II (8·16·1) 모형이 최적 학습모형으로 선정되었으며, 예측력 검증을 위해 공주지점의 홍수유출 예측결과를 용해공간 모형과 비교하였다. 그 결과 MANN I 모형이 상태공간모형 및 MANNII 모형보다 예측력이 우수한게 분석되어 홍수유출 예측시스템 개발을 위한 적정 모형으로 결정하였다. 최종 신경회로망 모형은 Web상에서 구동이 가능하게 C++ 언어로 개발하고 개발된 시스템을 시험 환경상에서 적용하여 Web에서의 홍수유출 예측시스템의 적합성을 확인하였다.

참고 문헌

전계원 (Kye-Won JUN)
1995년 : 충북대학교 토목공학과
(공학사)
2000년 : 충북대학교 토목공학과
(공학석사)
2004년 : 충북대학교 토목공학과
(공학박사)
2004년 ~ 현재 : 삼척대학교 방재기술평론
대학원 전임강사

관심분야 : 신경회로망, 지능형모델링, 수리 · 수문모델링
E-mail : kwjun@samcheok.ac.kr