DOI QR코드

DOI QR Code

A DELAY-DIFFERENTIAL EQUATION MODEL OF HIV INFECTION OF CD4+ T-CELLS

  • SONG, XINYU (Department of Mathematics Xinyang Normal University) ;
  • CHENG, SHUHAN (College of Information Science and Engineering Shandong Agricultural University)
  • Published : 2005.09.01

Abstract

In this paper, we introduce a discrete time to the model to describe the time between infection of a CD4$^{+}$ T-cells, and the emission of viral particles on a cellular level. We study the effect of the time delay on the stability of the endemically infected equilibrium, criteria are given to ensure that the infected equilibrium is asymptotically stable for all delay. We also obtain the condition for existence of an orbitally asymptotically stable periodic solution.

Keywords

References

  1. D. Ho, A. Neumann, A. Perelson, W. Chen, J. Leonard, and M. Markowitz, Rapid turnover of plasma virions and $CD4^+$ lymphocytes in HIV-1 infection,Nature 373 (1995), 123-126 https://doi.org/10.1038/373123a0
  2. X. Wei, S. Ghosh, M. Taylor, V. Johnson, E. Emini, P. Deutsch, J. Lifson, S. Bonhoeffer, M. Nowak, B. Hahn, S. Saag, and G. Shaw, Viral dynamics in human immunodeficiency virus type 1 infection, Nature 373 (1995), 117 https://doi.org/10.1038/373117a0
  3. A. Perelson, A. Neumann, M. Markowitz, J. Leonard, and D. Ho, HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, Science 271 (1996), 1582
  4. A. Perelson, P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M. Markowitz, and D. Ho, Decay characteristics of HIV-1-infected compartments during combination therapy, Nature 387 (1997), 188 https://doi.org/10.1038/387188a0
  5. A. Neumann, N. Lam, H. Dahari, D. Gretch, T. Wiley, T. Layden, and A. Perel- son, Hepatitis C viral dynamics in vivo and antiviral efficacy of the interferon-ff therapy, Science 282 (1998), 103-107
  6. A. Perelson and P. Nelson, Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev. 41 (1999), no. 1, 3-44 https://doi.org/10.1137/S0036144598335107
  7. V. Herz, S. Bonhoeffer, R. Anderson, R. May, and M. Nowak, Viral dynamics in vivo: limitations on estimations on intracellular delay and virus decay, Proc. Natl. Acad. Sci. USA 93 (1996), 7247-7251 https://doi.org/10.1073/pnas.93.14.7247
  8. Z. Grossman, M. Feinberg, V. Kuznetsov, D. Dimitrov, and W. Paul, HIV infection: how effective is drug combination treatment, Immunol. Today 19 (1998), 528 https://doi.org/10.1016/S0167-5699(98)01353-X
  9. Z. Grossman, M. Polis, M. Feinberg, I. Levi, S. Jankelevich, R. Yarchoan, J. Boon, F. de Wolf, J. Lange, J. Goudsmit, D. Dimitrov, and W. Paul, Ongoing HIV dissemination during HAART, Nat. Med. 5 (1999), 1099 https://doi.org/10.1038/13410
  10. J. Mittler, B. Sulzer, A. Neumann, and A. Perelson, Influence of delayed virus production on viral dynamics in HIV-1 infected patients, Math. Biosci. 152 (1998), 143 https://doi.org/10.1016/S0025-5564(98)10027-5
  11. J. Tam, Delay effect in a model for virus replication, IMA J. Math. Appl. Med. Biol. 16 (1999), 29 https://doi.org/10.1093/imammb/16.1.29
  12. P. Nelson, J. Murray, and A. Perelson,A model of HIV-1 pathogenesis that includes an intracellular delay, Math. Biosci. 163 (2000), 201 https://doi.org/10.1016/S0025-5564(99)00055-3
  13. J. Mittler, M. Markowitz, D. Ho, and A. Perelson,Refined estimates for HIV-1 clearance rate and intracellular delay, AIDS, 13 (1999), 1415 https://doi.org/10.1097/00002030-199907300-00023
  14. P. Nelson and A. Perelson, Mathematical analysis of delay differential equation models of HIV-1 infection, Math. Biosci. 179 (2002), 73-94 https://doi.org/10.1016/S0025-5564(02)00099-8
  15. H. I. Freedman and V. Sree Hari Rao, The trade-off between mutual interference and time lags in predator-prey systems, Bull. Math. Biol. 45 (1983), 991-1003 https://doi.org/10.1007/BF02458826
  16. J. K. Hale, Theory of Functional Differential Equations, Springer-Verlag, New York, 1977
  17. J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal. 20 (1989), 388-396 https://doi.org/10.1137/0520025
  18. H. Smith, Monotone semiflows generated by functional differential equations, J. Differential Equations 66 (1987), 420-442 https://doi.org/10.1016/0022-0396(87)90027-1
  19. K. Gopalsamy, Stability and oscillations in delay differential equations of population dynamics, Kluwer Academic, Dordrecht/Norwell, MA
  20. Hsiu-Rong Zhu and H. Smith, Stable periodic orbits for a class three dimentional competitive systems, J. Differential Equations 110 (1994), 143-156 https://doi.org/10.1006/jdeq.1994.1063
  21. E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters, SIAM J. Math. Anal. 33 (2002), 1144-1165 https://doi.org/10.1137/S0036141000376086

Cited by

  1. Qualitative Analysis of Delayed SIR Epidemic Model with a Saturated Incidence Rate vol.2012, 2012, https://doi.org/10.1155/2012/408637
  2. Threshold behaviour of a stochastic SIR model vol.38, pp.21-22, 2014, https://doi.org/10.1016/j.apm.2014.03.037
  3. Global stability analysis of HIV-1 infection model with three time delays vol.48, pp.1-2, 2015, https://doi.org/10.1007/s12190-014-0803-4
  4. Stability and Hopf bifurcation on a model for HIV infection of CD4+ T cells with delay vol.42, pp.3, 2009, https://doi.org/10.1016/j.chaos.2009.03.089
  5. A differential equation model of HIV infection of CD4+ T-cells with cure rate vol.342, pp.2, 2008, https://doi.org/10.1016/j.jmaa.2008.01.008
  6. Global dynamics and bifurcation in delayed SIR epidemic model vol.12, pp.4, 2011, https://doi.org/10.1016/j.nonrwa.2010.12.021
  7. Stability and Hopf bifurcation for a viral infection model with delayed non-lytic immune response vol.33, pp.1-2, 2010, https://doi.org/10.1007/s12190-009-0285-y
  8. DYNAMICS OF A NON-AUTONOMOUS HIV-1 INFECTION MODEL WITH DELAYS vol.06, pp.05, 2013, https://doi.org/10.1142/S1793524513500307
  9. A delay differential equation model of HIV infection of CD4+ T-cells with cure rate vol.31, pp.1-2, 2009, https://doi.org/10.1007/s12190-008-0191-8
  10. Dynamic behaviors of a delayed HIV model with stage-structure vol.17, pp.12, 2012, https://doi.org/10.1016/j.cnsns.2012.04.004
  11. Analysis of stability and Hopf bifurcation for an HIV infection model with time delay vol.199, pp.1, 2008, https://doi.org/10.1016/j.amc.2007.09.030
  12. Analysis of stability and Hopf bifurcation for a delay-differential equation model of HIV infection of CD4+ T-cells vol.38, pp.2, 2008, https://doi.org/10.1016/j.chaos.2006.11.026
  13. Stability and Hopf bifurcation in a delayed model for HIV infection of CD4+T cells vol.42, pp.1, 2009, https://doi.org/10.1016/j.chaos.2008.04.048
  14. Global analysis of HIV-1 dynamics with Hill type infection rate and intracellular delay vol.38, pp.21-22, 2014, https://doi.org/10.1016/j.apm.2014.03.010
  15. Stability analysis of delay seirepidemic model vol.3, pp.7, 2016, https://doi.org/10.21833/ijaas.2016.07.008
  16. Stability properties and Hopf bifurcation of a delayed viral infection model with lytic immune response vol.373, pp.2, 2011, https://doi.org/10.1016/j.jmaa.2010.04.010
  17. A Delayed Model for HIV Infection Incorporating Intracellular Delay vol.3, pp.3, 2017, https://doi.org/10.1007/s40819-016-0190-7
  18. Properties of stability and Hopf bifurcation for a HIV infection model with time delay vol.34, pp.6, 2010, https://doi.org/10.1016/j.apm.2009.09.006
  19. Analysis of the dynamics of a delayed HIV pathogenesis model vol.234, pp.2, 2010, https://doi.org/10.1016/j.cam.2009.12.038
  20. Effect of Time Delay on Spatial Patterns in a Airal Infection Model with Diffusion vol.21, pp.2, 2016, https://doi.org/10.3846/13926292.2016.1137503
  21. Geometric Stability Switch Criteria in HIV-1 Infection Delay Model pp.1432-1467, 2018, https://doi.org/10.1007/s00332-018-9481-y
  22. A mathematical and numerical study of a SIR epidemic model with time delay, nonlinear incidence and treatment rates pp.1611-7530, 2019, https://doi.org/10.1007/s12064-019-00275-5