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Design of a Planar Cavity Resonator for 12.5 GHz Low Phase Noise
SiGe HBT Oscillator
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Abstract

In this paper, the novel microwave oscillator incorporating a planar cavity resonator(PCR) is presented to reduce
the phase noise of the oscillator in a planar environment. Compared to the conventional planar( 1/4 open stub
resonator), the phase noise is improved about 16 dBc/Hz @100 kHz. The design of the oscillator is based on a
reflection type configuration using the low 1/f SiGe HBT transistor(LPT16ED). The output power is measured 2.76
dBm at 12.5 GHz. In this paper, the oscillator used to the PCR can be expected to provide a solution for low phase

noise oscillator in microwave circuits.
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[ . Introduction

The number of radio frequency applications has stea-
dily increased with demanding for more bandwidth and
higher data-rates which are shifting the carrier fre-
quencies to higher values. A Ku-band has been used in
a satellite communication since the end of 1970". In the
satellite communication, the low phase noise frequency
synthesizer is essential element to implement high
quality communication link.

Both the low 1/f noise of a device and the high quality
factor of a resonator are very important factors to reduce
the phase noise. SiGe HBT has good characteristics of
low-frequency 1/f noise compared to other devices such
as MESFET and HEMT!"P\ Therefore, the SiGe
HBT(LPT16ED) produced by SiGe semiconductor, Inc. is
chosen. Many kinds of the resonators have studied to
reduce the phase noise. Dielectric resonators have been
widely used for low phase noise, but it can not be used
to monolithic microwave integrated circuit. The
microstrip resonators have the advantages such as high
integration, low cost and simply manufacturing, However
it can not mainly affect to reduce the phase noise of
oscillator, due to the low Q of the resonator. Therefore,
the micromachined cavities of the planar type have be
developed” ™™, This resonator is asked to have a high
skill manufacturing process and the high cost of the
beginning development stage. .

In Fig. 1, planar cavity resonator(PCR) oscillator
consists in two kinds of the substrates(duroid 5880, &,
=2.2) which are different from thickness. The circuit is
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Fig. 1. The topology of the suggested PCR oscillator.

fabricated on the up substrate and the PCR on the
bottom substrate. As the rectangular via is in the role of
the cavity’s metallic wall, the size of the PCR is
decided by length d, width a and height . Coupling
between cavity and the microstrip line is achieved with
the slot on the ground plane of the microstrip line.

The main contributions of this PCR are following,
First, we can obtain the higher Q of the resonator than
that of other microstrip resonators. Second, it has the
advantage of a planar form which is easy to integrate
with microwave integrate circuittMIC). Because the
cavity substrate is placed at the bottom of circuit
substrate, it is easy to make integration better. Third,
there is easy-fabrication process, because of the con-
ventional PCB processing.

II. Selection of the Optimum Cavity Size
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When the wanted cavity resonator is designed, the
quality factor(QJ) and the mode characteristic of the
resonator must be taken into account. Through the
following design process, the excitation of spurious
modes is minimized and the @ is maximized. The
higher the Q of the resonator is, the more stable the
oscillator can be. The adjacent mode of the dominant
mode should be as far as possible to increase the
selectivity of oscillator frequency. It is relative to the
dimension of resonator. In Fig. 1, it consists of the
length d, the width a and the height b of cavity’s size.
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At equation (1), when the TEjy of the dominant
mode is 12.5 GHz, we can have the union of a and d
in 11.5<£d<25 mm, $=3.175 mm in Table 1. According
to this union, we can again get the harmonics at the
dominant frequency 12.5 GHz from equation (1).

Fig. 2 shows the mode chart for a rectangular cavity
with the variation of length a and d, when TE o, mode
resonant frequency is 12.5 GHz at 5=3.175 mm. The
farthest distance between the dominant mode(TEq) and
the second harmonic(TE;rz) must be selected to mini-
mize the excitation of spurious modes. Simultaneously,
the O of the resonator should be taken into account. The
unloaded Qo can be calculated on equation (2). Fig. 3
shows the relation of the unloaded Qo and the second
harmonic (TE]oz).

As you can see in Fig. 3, the farther the distance
between the dominant and the second harmonic is, the
higher the unloaded Qo of the resonator is. Therefore,
the relation of the unloaded Qo and the spurious is

Table 1. According to the size, the second harmonic at

f~12.5 GHz. (b=3.175 mm)

Dominant Second Frequency
d [mm] a [mm] Frequency[GHz] [GHz]
11.5 11.38459 12.5 19.7
11.8 11.11446 12.5 19.4
12 10.95499 12.5 19.2
12.3 10.74143 12.5 18.9
22.1 8.69417 12.5 14.8
225 8.67056 12,5 14.7
22.9 8.64835 12.5 14.7
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Fig. 3. The relation of the O and second harmonic at b
=3.175 [mm].

proportioned. When the 4=11.5 [mm] and a=11.38 [mm]
are selected, the second harmonic is at 19.7 GHz. At
this point, the excitation of spurious modes is minimized
and the unloaded Qo is maximized. Therefore, the initial
size of the cavity can be decided. These results are
verified with the eigemode solver of the FEM simu-
lator(HFSS).

II. Slot Position

The resonator of the band stop mode must be de-
signed for this topology of the series feedback oscillator.
So the coupling between the cavity and the microstrip
is occurred at H-field in this resonator. Using full wave
field simulation used to the FEM simulator (ansoft
HFSS), we can verify the H-field distribution of the
cavity. The high H-field distribution is at the near
rectangular via in Fig. 4. Therefore, this slot position is
selected at the high H-field distribution to get the high
coupling.
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Fig. 4. The H-field distribution of the cavity.

V. Resonator Parameter according to the Slot Size

The important parameters of the resonator such as
unloaded (Jo, loaded Q; and coupling coefficient K are
analyzed according to the slot size. The magnitude of
the Su(input reflection at resonator) is important to
gratify the oscillation condition. In the conventional DR
resonator, these parameters are decided by the distance
between the dielectric resonator and the microstrip!’.
But the parameter of this PCR is decided to the size of
the slot, due to the fixed circuit thickness. As the slot
length is varied from 2.0 to 4.0 mm with varying the
slot width from 0.1 to 2.5 mm, these parameters are
extracted by using the FEM simulator.

4-1 Unlpaded Qo and Loaded Q;

The average value of the unloaded Qo is 750.
According to the large size of the slot, the unloaded
Qo is varied largely. In Fig. 5, we can sec that the
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Fig. 5. Unloaded Qo according to the slot size.

maximum point is 802 and the minimum point is 550.

In Fig. 6, the values of the loaded Q; are in inverse
proportion to the size of the slot. It is clear that the
relation of the k and Q; is as like in equation (3). The
maximum point is 600 and the minimum point is 10.

4-2 Coupling Coefficient

The coupling coefficient is the measurement of the
degree of coupling between the cavity and the trans-
mission line. When K=1, this is a critical coupling. For
K<1, the -cavity is undercoupled to the external
component. The cavity and the external component are
overcoupled when K>1. In Fig. 7, the larger the slot size
is, the bigger the coupling coefficient is. The loaded Q;
and the unloaded (o are related by the coupling
coefficient. The relationship is

Qr=T1% G)
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If the high k is selected, the loaded Q; is low, and
then the phase noise is degraded. If the lowest K to get
the highest loaded Q; is selected, the oscillator condition
in equation (4) can not be satisfied. We need to trade
off between the loaded Q; and the coupling coefficient
K at the highest unloaded Qo.

4-3 Magnitude of Sy

When the oscillator is designed, we must think about
the magnitude of the Si;(input reflection at resonator) to
satisfy with the initial condition of the oscillator.

- 1
|Sll| > |S | Phdse(su) = phase( 5’11 )

(4)

Because the Si)' of this device is 1.45 2 —168.492,
Si1 can be calculated in equation (4). The magnitude of
S must be selected at the upper side of 0.68 in Fig. 8.
So the size of a slot is decided to select the 2.5 mm of
slot length and the 1.6 mm of slot width.

V. Designed PCR and Measurement Data

Using the general PCB processing, the planar cavity
resonator is manufactured in Fig. 9. Cavity substrate is
duriod 5880 which has ¢,=2.2 and thickness=3.175 mm.

In Fig. 10, there is the difference between the simu-
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Fig. 8. The magnitude of S); according to the slot size.

Fig. 9. Photo of designed planar cavity resonator.
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Fig. 10. Measured the parameter of the PCR.

lation and measurement data. It seems to generate the
manufacture error and the mismatch of the slots between
microstrip and cavity, so it was again simulated accor-
ding to the change of cavity size for getting the amount
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of the resonance frequency shift. As the width of cavity
reduces 0.02 mm, the frequency is shifted about +10
MHz. In Fig. 10(b), (¢), the average of the unloaded Qo
is 650. The measurement loaded Q is 100 worse than
the simulation data.

As mentioned in the previous chapter, the slot width
1.6 mm and length 2.5 mm are selected. In Fig. 11 and
Table 2, the simulation data is compared with the
measurement data. The O values of the unloaded and
loaded PCR is measured 667.9 and 115.6. The fre-
quency is shifted by the manufacturing error. @y is high
error as compared with the (o, due to the slot position
error. When the performance of the planar cavity re-
sonator is compared with the existing resonator in Table
3, the loaded Q of the DR is the highest value among
them. But the DR is the nonplanar structure. The MSR
has the advantage of planar structure. But the MSR has
the low unloaded @, due to the radiation.and dielectric
loss. MEMS resonators using micromaching techniques
to eliminate the dielectric loss have the unloaded Q of
500. But it needs to the high processing skill. As a
result, the unloaded Q of the planar cavity resonator is
much better than that of MSR and MEMS resonator.
Although the Q of PCR is lower than that of the DR,
there are merits of the easy fabrication, low cost, and
the integration capability.
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Fig. 11. Simulation and measurement data of designed PCR.

Table 2. The PCR parameter of the simulation and

measurement.
Simulation Measurement
Frequency 12.51 GHz 12.51 GHz
K 2.3387 1.5
Unloaded Q 691.4365 667.9
Loaded 198.8086 115.6

Table 3. The comparison of different resonators.

Type Frequency|GHz] | Unloaded Qu
Halr—pm[lo] 9 170
MSR |resonator
Spiral resonator' ! 10 146
Mu-:romachmed " 10.285 506
cavity resonator
MEMS
Membrane 28.7 460
resonator
DR |DR resonator!'” 9.6 5000
PCR | This work 12.56 667.9

VI. Designed Oscillator Using PCR

The topology of oscillator is used for the common
emitter series feedback. The series feedback is better
than the parallel feedback about low phase noise®™.
Another oscillator is designed by using a conventional
MSR{ A /4 open stub resonator) to investigate the per-
formance. The same circuit substrate(duroid 5880, Er
=2.2, thickness=0.5 mm) and the same device(LPT16-
ED) are used.

Fig. 12 shows the designed PCR oscillator. Two sub-
strates are aligned by several halls and are fixed by
several screws. The performance of PCR oscillator is
measured by the test fixture. When a RF cable loss is
considered, the output power of the oscillator was 2.76
dBm at /6(Tr base current)=497 p A and Vce(Tr currect
and emmiter voltage)=3 V in Fig. 13. The corres-
ponding dc-RF efficiency is around 2 %. In Fig. 14, the
phase noise measured is 109.23 dBc/Hz at the 100 kHz
offset.

When the base current is swept from 0.3 to 0.7 mA
at Vee=3 V, the base current dependence of the output
power, frequency deviation and phase noise is shown in
Fig. 16, Fig. 17. This PCR oscillator is stable within the
range of the base current which varies from 0.3 mA to
0.55 mA. In Table 4, measurement shows reduced phase
noise by 17.61 dB dBc/Hz @1 MHz offset in the oscillator

Fig. 12. Photo of designed PCR oscillator.
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the PCR oscillator shows the reduction of phase noise by
11 dBc/Hz @100 kHz offset compared to that of the
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Table 5. The phase noise of published oscillator. .

Frequency Output- Phase noise

power (@100 kHz)

DRY 127 GHz | —~10 dBm | —124 dBc/Hz

Hair-pin'” 9 GHz 5 dBm ~92 dBc/Hz
PCR 12.514 GHz | 2.767 dBm |~109.23 dBc/Hz

published hair-pin oscillator"®,

VII. Conclusions

In this paper, a design method for oscillator using the
planar cavity resonator is investigated, fabricated and
tested to obtain the low phase noise oscillator utilizing
hybrid integration on all planar printed circuit board.

The output power of the oscillator is 2.76 dBm and
the phase noise is —109.23 dB¢/Hz @100 kHz offset,
Although this PCR oscillator shows higher phase noise
than DR oscillator, the phase noise level of the PCR
oscillator is lower than that of the MSR oscillator and
the oscillator based on MEMS resonator™®!.

That is, 1) The PCR oscillator makes an integration
circuit better than the DR oscillator. 2) The fabrication
processing of the PCR has easier than that of the
MEMS resonator. 3) The O of PCR is higher than that
of MSR. Therefore, PCR shows a noticeable reduction
of phase noise and expects to the possibility of the easy
fabrication and inexpensive mass production,
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