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Human Hierarchical Behavior Based Mobile Agent Control
in Intelligent Space with Distributed Sensors
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Abstract : The aim of this paper is to investigate a control framework for mobile robots, operating in shared environment with
humans. The Intelligent Space (iSpace) can sense the whole space and evaluate the situations in the space by distributing sensors.
The mobile agents serve the inhabitants in the space utilizes the evaluated information by iSpace. The iSpace evaluates the situations
in the space and learns the walking behavior of the inhabitants. The human intelligence manifests in the space as a behavior, as a
response to the situation in the space. The iSpace learns the behavior and applies to mobile agent motion planning and control. This
paper introduces the application of fuzzy-neural network to describe the obstacle avoidance behavior learned from humans.
Simulation results are introduced to demonstrate the efficiency of this method.
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L Introduction

The Intelligent Space (iSpace) is a space (room, corridor or street),
which has ubiquitous distributed sensory intelligence (various sensors,
such as cameras and microphones with intelligence) actuators (TV
projectors, speakers, and mobile agent) to manipulate the space [1-3].
The iSpace propagates mobile robots in the space, which act in the
space in order to change the state of the space. These mobile robots
are called mobile agents. Mobile Agents cooperating with each other
and core of the iSpace to realize intelligent services to inhabitants. The
intelligence in iSpace has capability of evaluation of situations inside
the space [2]. The evaluated situations are applied for learning the
behavior of inhabitants. The evaluated behaviors are given to the
control system of mobile agent. There are many definitions of the
intelligence. The intelligence can be considered as a reaction against a
given action.Behavior is a generalized mapping between situations
(state of the space) and actions. But the intelligence is also means
capability of learning. The iSpace integrates both types of definitions.
Inhabitants in the iSpace are producing intelligent reactions against
instantaneous situation.

The iSpace evaluates situations (actions-reactions) from sensed
information [4]. The evaluated situations are given to the learning
system, where behaviors are concluded from situations. The mobile
agents serve the inhabitants in the space utilizes the evaluated
information by iSpace [5]. The mobile agents have sensors and/or
actuators with computational devices and computer network
communication capabilities. The iSpace senses the space and acting in
the space. The sensing is done through distributed sensory network,
and the acting is done by global actuators like projectors or speaker
systems, or by local actuators like mobile agents. The mobile agents
can sense the space and can act in the space locally.

The personal communication between the iSpace and a certain
individual is an example for local sensing and acting. iSpace
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intelligence of the motion planning and control are based on learned
human behaviors. The human behaviors are extracted from the space
by sensor system of iSpace. The pedestrian walking behavior includes
many parts like planning activity, obstacle avoidance and walking
pattern. This paper focuses on obstacle avoidance behavior of
pedestrians. The mobile agent control is derived from pedestrian
hierarchical behavior model.

The rest of this paper is organized as follows. The following section
summarizes the pedestrian behavior models and proposes a mobile
agent control framework. Section III explains the obstacle avoidance
behavior and introduces a mathematical model to describe the
particular behavior. Obstacle avoidance behavior is modeled by
artificial potential fields. Fuzzy-Neural Non-linear Function
Approximation is applied to describe the artificial potential functions.
Section [V introduces the evaluation and learning capability of Fuzzy
Neural Network. The evaluation is done by walking path extraction
from spatially distributed camera sensors. Section V introduces some
simulation examples to demonstrate the effectiveness of this method.

1. Mobile control framework

The task of the mobile agent is to provide certain set of services to
inhabitants, cooperation with distributed sensory intelligence. This
section focuses on the human behavior that describes walking from
one place to other place.

Understanding pedestrian behavior is essential in a shared
environment, where the mobile robots should operate without
disturbing humans. The robot has to realize the human walking
intentions, and avoid any collision with humans and other obstacles.
Human walking behavior in defined by the features of the
environment, the physical conditions, and the goals [11,12].

A vertical layered model is composed from walking sub-behaviors
[11] and applied in this paper as a theoretical foundation of mobile
robot control. The layered control framework is adapted to the
distributed feature of the iSpace. As a resuit of analysis of walking
subtasks, we concluded a tree-layer control structure comparison of
human behaviors with mobile agent control tasks (table 1.). Long term
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Fig. 1. Control framework of mobile robot.

decisions are made in Strategic Level. The strategically decisions are
often made by groups of person in real life. Therefore, strategic
decisions are made globally for mobile agents in iSpace.
Corresponding human sub-behaviors are Activity Listing and Long
Term Perception. Activity listing is a series of actions to fulfill some
requirements of Social Behaviors while realizes a specified goal. The
long-term perception is intention free but action oriented model of the
sensed space. Long Term Behavior Selection and Global Sensor
Fusion models the Social Behavior on the mobile robot side. The
social behavior of the inhabitants is recognized by long term behavior
selection as global behavior of the humans and creates cooperative ot
counteractive behavior for mobile robots. The Global Sensor Fusion
function is the fusion of various sensor data into an integrated data
structure which is describes the various aspects of the space. Global
sensor fusion involves cooperation with DINDs, the distributed
sensory network.

The short term decisions are made in Tactical Level. Activity
Scheduling is the decision mechanism to realize the listed activity in
order to maximize the effectiveness of each activity. The Activity
Area and Route Choice behavior modifies of the scheduling
according fo the local and instantaneous features of the space. Tactical
level controls the mobile robot local behaviors. Local Behavior
Arbitration takes care of the action-reaction between the robot and its
local environment. Tasks of Obstacle Avoidance and Target
Scheduling model activity area and route choice behavior of
pedestrian. Motion Control Level involves reflexive behaviors both
for human and mobile robots. Walking Pattern behavior is depends on
physical condition and personal characteristics.

Many small reflexive behaviors, like balancing, stepping, and
walking, are combined together for fast and accurate movement
control. Attention filtering behavior implements fast and accurate
selection of sensed local information to drive motion behaviors.
Dynamical Motion Control belongs to this layer at the robot side. The
task of dynamical control is external and internal disturbance rejection
to keep the motion of mobile robot in stable and controllable states.
The robot should adapt also dynamically to its local environment,
even if the robot parameters or the environmental parameters have
changed. Local sensors and sensor filtering functions are needed for

Table 1. Sub-behaviors of pedestrian behavior, comparison of walking
subtasks between humans and mobile agents.

Pedestrian Mobile Robot
St;ateg;c _ﬁ cthI;y i:tmg -Behavior Selection
. eve . ong f,: -Global Sensor Fusion
(Social Behaviors) | Perception
. L. . -Local Behavior
Ticenc;ll ‘2C?V}ty /S\crhedulmg Arbitration
Local BV]: . e d‘\};‘ty " éi . -Obstacle Avoidance
(Local Behaviors) | and Route Choice Target Scheduling
Motion
Control Level | -Walking Pattern -Dynamics Control
(Reactive -Attention Filtering | -Sensor Data Filtering
Behaviors)

fast reflexive behaviors. Sensor Data Filtering models the attention
selection and filtering behaviors of pedestrian.

Fig. 1 shows proposed mobile control framework in iSpace. The

Strategic Level belongs to the iSpace, which has connection with the
DIND network. The DINDs could filter specific information from the
space like human location or human gesture with attention filtering.
The Tactical Level and Motion Control Level are belonging to a
specified mobile robot.
The Global Sensor Fusion module receives information from DINDs
and issues target for Target Scheduling module of a specified mobile
robot. Global behavior of pedestrians is considered in Long Term
Behavior Selection module, and corresponding behavior is sent to
Obstacle Avoidance module. Each mobile robot has Tactical Level
control unit. The tactical control unit receives strategic behavior
commands, and also local information around the specific robot from
DIND network. For example, location of the robot and the object
around the tobot is necessary for obstacle avoidance. The tactical
control unit sends dynamical parameters, such as velocity and speed
of angle to the operation level. Motion Control Level handles the
robot dynamics. The aim of motion control level is a dynamical
motion control against the parameter uncertainties of the robot's body
and external disturbances.
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IIL. Modeling obstacle avoidance behavior

Let us consider two typical styles (Fig. 2). One, main navigation
behavior of an aircraft carrying dangerous material is to keep "as far
from the mountains as possible” Two, remaining in secret while
seeking a mouse leads to the opposite behavior for a cat, namely, "get
as close to the object as possible”

If the iSpace can observe and learn the behavior of a human being,
then it can send a proper command to the Mobile Agent in such
situation and the Mobile Agent avoids the collision. The Mobile
Agents can change its obstacle avoidance behavior according to the
local situation around the agent.

/\/\_J

-— -

-

Fig. 2. Basic obstacle avoidance strategies: “as far as possible” (left)
and “as close as possible” (right).
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Fig. 3. Two different obstacle avoidance strategy may result dangerous
situation.

*3a N V"H n1 _’m_'
Eh\ R T

Obstacle Obstacle

Fig. 4. Scanning area of the robot (left), direct evaluation of sensor

information (right).
Guiding f
Force ,
: ROBOT
. OBSTACLE] . —
GOAL Attractive  Repulsive
Force Force

Fig. 5. Local minimum point of the potential based guiding,

MO - Xis3l- AIAEBS =X M 11 2, M 12 & 2005. 12

A simple combination of these basic behavior styles can
characterize the main rule of a traffic system: "keep close to the right
or the left side". Let’s consider a simple example to illustrate the
importance of this knowledge. Let's assume that Japanese and
American persons are walking towards each other. Recognizing this
situation, they try to avoid each other. Using their national traffic rule,
the Japanese person keeps left and the American keeps right and they
are again in front of each other. It might be ended in a collision. (see
Fig. 3).

1. Direct evaluation of sensor information

Artificial potential based guiding approach is applied to handle the
dynamic and uncertain environment around the robot ([6,7]). The
robot can detect objects in the scanned area (Fig. 4).

The scanned area is divided into » scanned lines that are pointed
into directions of €; (unique vectors, where i = /... n). The radial

scanned lines structure has an important advantage that spatial density
of the scanning is growing with the decreasing distance between the
obstacle and the robot. The sensor system provides the distance
between the robot and the object on the scanned lines [10]. The main
idea of the potential based guiding is to repulse (or attract) the robot
fromto the obstacles [8]. The objects and the target generate
imaginary forces ( y;, i=I...n) acting on the robot. Summing the

effect of these virtual forces, the desired moving direction can be
obtained. The virtual vectors must be calculated for each location as
quickly as possible to achieve a smooth and reactive guiding. The
magnitudes of the repulsive forces are usually inversely proportional
to the distance between the obstacles and the robot but they can be
described by any non-linear functions.

The virtual force along the scanned line:

Vi = wi(x;)€; o

where i = I..n (n is the number of scanned lines) from the
measured distances ( x; ) to each scanned lines. The w;(x;) is the
weight function of the scanned line. The virtual force vectors are
pointed into the opposite of the scanned direction (key idea of
potential based guiding), and their absolute values depending on the
detected distances are: If/ll =w;(x;) . The overall force is the

summation of the virtual forces along the directions of the scanned
lines:

y= Zwi(xi)éi . @
=1

In many cases this kind of evaluation is not effective. For example let
the weight function on each scanned line the same. Applying (2) to
symmetrically located obstacles, will result attractive and repulsive
force, and the sum results zero vector (see Fig. 5).

The attractive force represents the goal reaching behavior, while the
repulsive force represents the obstacle avoidance behavior. Choosing
one of the ¥, , what is perpendicular to the attractive and repulsive
force, in the evaluation would lead to escape from the local minimum.
2. Indirect evaluation of sensor information

To avoid the local minimum problem (Fig. 5) an extension of the
above mentioned method is introduced. All sensor information is
propagated to all outputs (Fig. 6). Weight fimction is introduced
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between scanned inputs i and the output nodesj (j=1... m):
n
y= ij,i(xi)éi (©)
i=1

The summarized vector output is calculated as in (2), but with
extended weight functions as in (3):

y= iiwj,i(xi)éi )

j=1 i=l

3. Fuzzy-neural approximation

The weight functions are approximated by fuzzy sets. The fuzzy
approximation gives piece-wise linear approximation in case of
triangular antecedent fuzzy set. The number of antecedent fuzzy sets
are denoted with %, where k=1... [. Fuzzy approximation of direct
sensor evaluation is shown first. The weight function of direct
evaluation of sensor input [9]:

!
wi) = Dty ()b ©)
k=1

The u 4, (x;) is the membership values of the sensor value, X;

case of antecedent set %, and direction of scanned line 7. The b, is

the consequent set for antecedent set &, and direction of scanned line i.
In this model the consequent set is only one value set. The virtual
vector along the scanned line / is generated by:

!
Fo= Dty ()b 48 ©)
k=1

Where ¢€; is a unique vector pointed into the ditection of scanned

line as in (2). Summarized vector output (2) approximated by fuzzy

sets:
n I
F=D03 ty ()b, ™

i=1 k=1

The indirect evaluation of sensor information can be approximated
by a generalized forward neural network that is general in the sense
that it has various weighting functions set on the connections among
the neurons [10].

One weight function which connects the sensor input 7 and the
output node j:

I
w; i (x;) = ZﬂA,.,k (x)b; i x ®
k=1

In equation (8) the antecedent sets (Ai’ ) are depend only the

scanned lines 7, but independents from the output nodes j. The
consequent sets are depend both on the scanned lines 7, and the output
nodes j. Vector output along one output node j:

n |
Vi = ZZNA,.’,{ (xi)bj,i,kéi ©)

i=1 k=1

|7

ctor Output

Qutput
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S 04 ~., -
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Fig, 6. Fuzzy approximation of indirect evaluation of sensor information.

Summarized vector output of the fuzzy-neural network:

m n 1
Vi= ZZZ%’AM (X ;.4 (10)

j o=l k=)

Fig. 6 illustrates the applied fuzzy neural network architecture. Each
sensor data ( X;,i =1...n ) is distributed to each sensor node ( y; )
via the weight function, 7, (X ). Weight functions are piece-

linear approximated by fuzzy sets. The input fuzzy set is Ruspini
partitions in our case. The consequent fuzzy sets are one valued fuzzy
sets. This simple architecture enables fast computation, and simple
implementation algorithm.

1V. Evaluation and learning of pedestrian behaviors

This section illustrates the learning capability of the obstacle
avoidance behavior of mobile robot. The leaming capability enables
by the fuzzy-neural network which is applied for approximation of
direct and indirect sensor evaluation.
1. Evaluation and learning framework

Fig. 7 shows the actual configuration of leaming. The picture of the
human walking is taken by the DIND and sent to the Human
Localization Module. The module calculates the human position and
sends to the Learning module. The result of the leaning is a potential
function, what is given to the robot control module.
2. Learning method of fuzzy neural network

Learning method is introduced for indirect sensor evaluated control
(Section 11I-B). The human walking path (p/2/) calculated by Human
Localization module. The walking path is a discrete series of position,
along time series £={t=t(k)|k=1I... z}. The path is scaled to the
obstacle avoidance control:

drn =51 2L an
[Pl

where ®[¢] denotes vector value at /=#(k) time instance. | y[#]|

is the absolute value of obstacle avoidance initial rule base. The
training algorithm does not tune all sets, but the absolute value of the

consequent vectors, namely values b ; ;[7]. The r-#h training pattern
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contains input values x;[7] and the desired output direction d 1%].

The error criteria is the instantaneous error between the reference
vector and the robot (Fig. 8):

m n I
El=dl- 311 =dlt]= D 3>t (51D, 14 (12

j=t i=1 k=1

The instantaneous gradient:

HO - ss - AlAs2s =2X W 11 &, M 12 S 2005. 12

%,»,km=%(;—[’1—)=—25[t]u,ﬁ,,k<xi[r])é,- &)
Jsls

In order to tune values b, ;[f] the gradient descent method is
applied as:
Ab,; [K1==p'V [ ==2p'E[fu, , (x110) =
=PHy, (x;[tDElzle;

a4

where p=2p’ is the leaming parameter. In (14) the vector product can
be calculated as:

Eltle; =| €[7]] cos([1]) (1)
Consequently, the tuned consequent sets:

byt +1=b; (114 ppy  (x[2]) | 1] | cos(Fe]) (16)

where 9.[i] is the angle of the error vector £[¢] and the unique

vector € .

Fig. 8 shows the obstacle avoidance behavior leaming method. The
error defines as the difference between, the reference moving direction
(Reference vector) (walking habit from the observed path) and the
Robot's moving direction (Robot vector). This error vector is
evaluated back to the direction of the sensors, and tunes the weight
constants, b;; ([7].

Fig. 9 shows the convergence of the training procedure with
different values of learning parameters, . When P=2 almost 10
learning iterations is necessary with the same training data for small
error. Increasing learning parameter, P may not means faster leaming,
In this training session, P=5 gives faster learning, than P=7. The
learning parameter should be tuned for each training session, as a
conclusion of training process.

V. Examples
Tactical Level Control of Mobile Agent is considered in this section.
The control framework for tactical control is shown in Fig. 10. The
output of this layer is Moving Vector that points toward the moving
direction, and its absolute value represents the desired instantaneous
traveling speed.

The Moving Vector (M ) is weighted summary of the Obstacle
Vector ( 3 ) and the Target Vector ( T)

M(t) = ay(t)+bT (1) an

To approach the target and avoid objects behavior can be tuned by
the weight parameter ¢ and b. If b is positive, then the mobile agent
approaches the target even there is no obstacles y=0. If b is

negative, than the mobile agent is pushed by the target.

Fig, 11 shows a basic example of obstacle avoidance. The robot
moves from start position to goal position. The robot cannot move
directly form start to goal position because of corner. Fig. 11(a) shows
the resulted path according to (17). The resulted path and the resulted
behavior can be changed by parameter @ and b.

Fig. 12 shows three cases of trained obstacle avoidance behavior.
The basic obstacle avoidance behavior of manual control were: 1) keep
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on left side. 2) keep on right side. 3) get as far from the objects as
necessary. Fig. 12 shows the obstacle avoidance behavior of the three
trained mobile agent among the new set of objects. We concluded that
the robot is able to pick up the main human obstacle avoidance
behaviors.

The next demonstration illustrates the limitation of the presented
method to describe the obstacle avoidance behavior. The thick lines
represent wall-type objects. In Fig. 13, the mobile agent try to reach
the goal position on the right side, using three different guiding styles.

Obstacles

Fig. 12. Path of the mobile robot (left) and the obstacle vectors along
the path (right).
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Fig. 13. Demonstration of basic obstacle avoidance Behaviors;
application of behaviors in different environment, where the
learning has been done.

The “keep on the left side” style in not successful in this environment,
because the mobile agent does not approach the goal position. Robot
with “keep on the right side” style approaches the wall, and moving
along the wall. Circular vibration is observed in the robot’s path, when
the robot lefts the walls. This caused by the decision mechanism
between the obstacle avoidance and the goal reaching when the robot
left the walls. The “get far from the objects™ guiding style is optimal
for this environment.

VL Conclusion

The aim of this paper is to investigate a control framework for
mobile robots, operating shared environment with hurans. The
principle of control framework is derived from pedestrian behavior
model. The obstacle avoidance behavior is a characteristic featute of
the proposed framework. Virtual potential based obstacle avoidance
method is applied to describe the obstacle avoidance behavior. The
virtual potential method is approximated by fuzzy-neural network.
The leaming capability of fuzzy-neural network, and leaming
methods is also presented. The learning methods, and the learning
configuration in the iSpace will be revised as a future work.
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