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On Realization of 2D Discrete Systems
by Fornasini-Marchesini Model

Li Xu, Liankui Wu, Qinghe Wu, Zhiping Lin, and Yegui Xiao

Abstract: In this paper, we propose a constructive realization procedure for 2D systems which
may lead to a Fornasini-Marchesini local state-space model with much lower order than the
existing realization procedure given by Bisiacco et al. Nontrivial examples are illustrated and
the conditions for minimal realization are also discussed.
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1. INTRODUCTION

The field of two-dimensional (2D) filters and
systems has received much attention over the past
three decades with wide applications in image
processing, geophysics, control systems and multipass
processes (see e.g., [1-4]).

One of the fundamental issues in 2D filters and
systems is the realization of a given transfer function
or transfer matrix by a certain kind of 2D local state-
space model, typically by Roesser model or Fornasini-
Marchesini second (FM-II) model (see, e.g., [3,5-17]).
It is well known that, unlike the one-dimensional (1D)
case, it is very difficult to obtain a minimal state-space
realization in the 2D case except for some special
categories of 2D systems [7-17]. Hence, for a general
2D transfer function or transfer matrix it is desirable
to obtain a state-space realization with as low order as
possible. Note that by “a general system” we mean
that there is not any restriction on the coefficients in
the transfer function or transfer matrix of the system.

While state-space realization by Roesser model has
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been investigated by quite a number of researchers
(see [9,15-17] and the references therein), less
attention has been paid to state-space realization by
FM-IT model and few results are reported in the
literature [8,13]. In this paper, we consider the
realization of a given 2D multi-input multi-output
(MIMO) system by FM-II model.

In the next section, we review an existing procedure,
proposed by Bisiacco et al. [13], for state-space
realization of a given MIMO 2D system by FM-II
model. In Section 3, a new constructive realization
procedure for FM-II model is presented which may
give system matrices of much smaller sizes while
preserving the desirable properties of the state-space
realization by the procedure of [13]. Illustrative
examples are given and the conditions for minimal
realization are discussed in Section 4. Conclusions are
briefly stated in Section 5.

2. PRELIMINARIES

The 2D FM-II model is described by

x(th+1Lk+1)=A;x(hk +1)+ Ax(h+1k) (1)
a

+ Bu(h,k + 1)+ Byu(h +1,k),
y(h,k) = Cx(h,k)+ Du(h,k), (1b)

where x(hk)eR”", u(hk)eR' and y(hk)eR™
are respectively the local state, input and output
vectors, and 4y, 4, By, By, C and D are real
system matrices of suitable sizes. The system is also
conventionally denoted by (4, 4, B, B,, C, D).
The transfer matrix of (1) is

W(z,2) = CU-Az~Ay2y)  (Biz1+By2) +D. (2)

When D =0, the system is said to be strictly causal.
As D=W(0,0) from (2), in this paper we will
assume without loss of generality that the transfer
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matrix W(z,z,) under investigation is strictly
causal. Throughout the paper we order the 2D power
products zlhzéC by the total degree (lexico-graphic)
order, ie., 1<z <z <212 < Z1Zy <222 <-+ . The
degree of a 2D polynomial f(z,z,) is the degree of

the maximal-order power product of the given
polynomial, denoted by deg f . We also denote the

highest degree of 2z or z, in f(z,z,) by
deg, f or deg,, f.
Consider now an mx] strictly causal 2D transfer

matrix W(z,z,) that has a right matrix fraction
description (MFD)  Ng(z,2,)Dp(z1,2,)"  with
Dg(0,0)=/ and Ng(0,0)=0 [13]. Let N(z,z,)
=Ngp(71,25), D(z1,25)=1-Dg(z,2,). Denote by

ki, i=1,...,/, the column degree of the ith column
of

Mz, 2 )} 3)

L P

that is, the degree of the polynomial with the
maximal-order power product in the ith column. A
constructive state-space realization procedure for FM-
II model for a strictly causal W(z,z,) has been

given in [13]. For comparison, we briefly outline this
procedure below.

Step 1: Construct the matrix ¥ =diag{¥,,...,¥,;}

where P, is the column vector defined as

ki k-t k-1 K 2 T
Vidzy 2y 'z zpz)"  z)t 2z 7 zp 7] (D)
Step 2: Write D(z1, z») and N(z,, z5) in the form of

D(z,2z;) = Dyr¥, ()
N(z1,2;)=Nyr'¥, (6)

where Dyr and Npyp are real matrices with sizes
conformableto ¥ .

Step 3: Construct matrices A, B;, i=1,2, such
that

(I - Aoz, — A9z,) " (Byz) + Byzy) = . 7

Step 4: The realization is finally obtained as
Ai:14‘iO+BiDHT’ B; i=1,2,and CZNHT'

1

The above realization procedure produces a state-
space description (4, 45, By, B;, C) which have the
following desirable properties.

() [I-Az~A4yz, Byz+B,z, ]is full rank in C?;

(ii) det (] — 4z — Ayz, ) =det Dg(z,2,) .

If Dg(z,z,) and Ng(z,z,) are right factor
coprime (r.f.c.) the resultant state-space realization
will be free of hidden modes [13]. These properties
are very important in 2D control systems and signal
processing [4,13]. However, a disadvantage of this
procedure is that the sizes of the resultant system
matrices are quite large in general, mainly due to the
large size of matrix ¥ . From the above realization
procedure, it can be easily seen that the size of column

kitlp while  the

i size of

vector ¥, is ;=

. . l .
matrix ¥ is n'x/ where n’=zi=1n,- is usually a

rather large number. When #’ is large, the sizes of
the resultant system matrices will also be large as their
sizes all depend on #' in the following manner,
Dyr:Ixn'; Nyp, C:mxn'y 4;:n'xn’;and B; : n' <1,
i=12.

In the next section, we will propose a new
procedure for construction of ¥, 4;, B; and C
whose sizes may be much smaller than those obtained
by the procedure of [13]. Moreover, the desirable
properties (i), (ii) as well as other nice propetties
reported in [13] are also preserved.

3. MAIN RESULTS

As discussed in the previous section, the main
factor contributing to the large sizes of system
matrices in the realization procedure of [13] is the
way in which ¥ =diag{¥;,...,¥;} is constructed. In
fact, the vector ¥; given in (3) is constructed by
using all the power products whose total degree order
are equal to or below the column degree k;,
i=1,..., [13]. However, it is easy to see that, to
realize a 1D transfer function W(z) with degree #, one
has to use all the power products " with 0<h<n
even when some of them are absent, i.e., have zero
coefficients in W(z), while for a 2D transfer function
W(zy,2z,) with degree n, even in the case that some

power products zlhzéc with 0<h+k<n are absent

in W(z,z,), it is still possible to construct a 2D

state-space realization (see the examples given in next
section). This is essentially due to the properties that,

in the 2D case, the number of power products zlhzé‘
with 0<h+k<n is w'=3"" j which is usually

much larger than the degree n of W(z,z,), while

in the 1D case there are only n power products "

with 0 </ <n which is just the same as the degree n
of W(z). This fact means that ¥ constructed by the
procedure of [13] may contain some redundant power
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products that do not contribute to the resultant
realization. Hence, a critical point is to construct a

new Y containing only the power products necessary
for the realization.

By thoroughly investigating the structural
properties of FM-II model (see Example 1 shown in
the next section), we found that, to meet the relations
specified in (5), (6) and (7) so that a realization can be
obtained, W has to satisfy the following conditions:

(a) ¥; contains all the power products occurring in
the polynomial entries of the ith column of
F(z,2y).

(b) ¥; contains z or z,,orboth z and z,.

(c) Let m; (i=1,...,]) be the dimension of ‘¥;. For
every entry W;(j) (je{l....,n;}) except for the
entry that is either z; or z,, there exists another
entry W,(h) (he{l,...,n;}) suchthat

¥i(N=7Y,(h) or ¥, (j)=2zY(h). (8)

It is shown in the sequel that, based on these
conditions, it is possible to identify the power
products that are necessary for construction of a
realization whereas discarding those redundant power
products.

Consider again the 2D polynomial matrix F(z;,z,)
defined in (3). Let n; (i =1,...,/ ) denote the number of
all the power products zlhzg occurring in any of the
polynomial entries of the ith column of F(z,z,)

with non-zero coefficients. Construct column vector
W, using these ordered power products with the first

entry ‘¥;(1) having the maximal-order while the last
entry W;(n;) baving the minimal-order. Obviously,
the initial column vectors ¥; (i=1,...,[) of

dimension 5, constructed in the above manner satisfies
the condition of (a). Starting from the initial ¥,

(i=1...,I) , an algorithm is given below for
constructing the final ¥; (i=1,...,/) which satisfy
the conditions of (b) and (c). Note that, for ¥, with its

entries ordered in the above manner, the condition of
(c) can be modified to the following form:

(c) Forevery entry ¥,(j) (jefl,....n;}) except for
the entry that is either z or z,, there exists
another entry W¥;(h) (j<h<n;) such that

YiD=7Y,(h) or ¥,(j)=z¥(h) ©

The main idea in the following algorithm is to
insert appropriate power products into ¥; until ‘P,
finally satisfies the conditions of (b) and (c). Note that
the dimension (n;) of the final column vector ‘¥,

may be larger than that of the initial ¥;.
Algorithm 1

Step1: i=0.
Step 2: i=i+1;j=0. If [>/, exit. Otherwise, proceed
to Step 3.

Step3: j=j+1, r=1. Check whether there exists
an entry ¥, (A) ( j<h<wn; ) such that
condition (9) is satisfied. If yes, repeat Step 3.
Otherwise, proceed to Step 4.

Step4: If j=mn -1, check whether ¥;(j)=2z,
(which implies ¥,(j+1)=%;(m)=2z ). If
yes, return to Step 2. Otherwise proceed to
Step 5.

Step5: If j=n

., check whether W,(j)=z or
W,(j)=2z,. If the answer is yes, return to
Step 2, and if the answer is no, go to Step 7.
If j+#n;,proceed to Step 6.

Step 6: r=r +1. Check whether there exists an entry
W;(k) for j<k<n; that satisfies either

(=2 (k) or ¥i())=2z¥;(k).

If the answer is yes, insert either
AWk o 2O (k) at an
appropriate  position according to the

descending order of power products in ¥,
for s=1,...,r=1. Let n,=n+(r-1), and
return to Step 3. In the case that the answer is
no, check whether r <deg¥,;(/)—-2. If yes,
repeat Step 6. Otherwise, proceed to Step 7.
Step 7: Check whether degzl‘Pi(j) > degZZ‘Pi(j). If

yes, insert zy 1‘1’,-( j), while if no, insert
zgl‘Pi(]'), into W,

; according to the
descending order of power products. #;= n;+1
Return to Step 3.

Once Y,...,%¥; are constructed by Algorithm 1,

Y=diag {¥,,...,¥;} can be readily obtained. ¥ is

. 1
now of size nx/, where n :ZH n; . Note that »

will be smaller than »' if some power products are
absent in the polynomial entries of F(z1,z;). This will
be illustrated by a non-trivial example in the next
section.

Next, express D(z;,2,) and N(zy,25) in the form

D(Zl,Zz):DHTlP, N(Zl,Zz):NHT\P, (10)
where
Dy - Dy Ny o Ny
DHT: : . ‘ NHT: . .
Dy -+ Dy N o N
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and D; eR'” and Ny eR'" are row vectors
whose entries are the coefficients of the (i,)) -
indexed polynomial in D(z,z,) and N(z,z,) ,
respectively. The system matrices 4, 4, B, B,, C
can then be constructed by the following algorithm.

Algorithm 2
Step 1: Introduce #; xn; matrices Al(é) and Aéi)) ,
i=1,---,/ which are determined in the

following way. Set initially all entries of
Al((? and Ag’g to zero. For k=1,...,n;, let
only Al(é) (k,hy)=1 if there exists certain
hy, (k<h <n;) suchthat

¥, (k)=z¥; (I ), (1)

and let only 4S5 (k,m;) =1 if condition (10)
does not hold and there exists certain my
(k <my <m;) such that

W, (k) =z, (my ). (12)

It is obvious that Al(é) and Agg are upper
triangular matrices and have at most only one
entry equal to 1 in the same row of Al(é) and
A9,

Step2: For k=12, column
BY) R, i=1,..,1, by setting initially all

construct vector

the entries of B,Ei) to zero. If there exists
some /4 suchthat W¥,(h) =z, , change the A
th entry of B,(ci) tol.

Step 3: Construct the nxn matrices A, 4, and

the nx/ matrices Bj, B, as follows.

Ao =diag {4(g), 47, -, 47},
; 1 p2) ! (13)
B, =diag (B, B, ..., BV}, k=1, 2.
Step 4: It is easy to see that
(I — Aypz) — Ax2z2)Y = Biz + B)z, (14)

and it can be shown, in the same way of [13],
that

1
{I = (4o + B Dyr)z —(Ay + ByDyr)zy )
'(B]Zl +BzZz) = \PD}EI (Zl ,Zz )

Therefore. we have

Ng(21,23)D5'(21,23) = Nyp ¥Dg (21, 25) =
-1
N yr{I-(49+B\Dyr )z~ (4 +B2 Dyr) 22 |
(Bizi+B,2,)

and thus the realization for W =N RDIEI with

A & Ao+ BDyr, 4= Ay+ B Dy,
B, B, CE Ny

Remark 1: It is ready to show that the obtained
realization has properties (i) and (ii). Hence, when the
MFD of W(z;,z,)is r.f.c., the state-space realization

by the proposed algorithms will be free of hidden
modes.

Remark 2: It should be noted that Algorithms 1
and 2 are constructive and applicable to a general 2D
system. That is, for any arbitrarily given strictly causal
2D transfer matrix, the matrix ¥ and the
corresponding realization (4, 4,, By, B,, C) can be
definitely constructed. Then the order of the resultant
realization is immediately determined by the
dimension of ¥ constructed for the specified
transfer matrix, which is the lowest possible one in the
sense that if any power product in ¥; (i=1,...,/)is
removed, then conditions (a), (b) and (c) will be
violated. Obviously, if no power product is absent in
the polynomial entries of F(z,2,), the realization by

our procedure will have the same order with that of
[13], which may be viewed as an upper bound of the
order due to our procedure. Otherwise, our procedure
may give a realization with lower order according to
the specified transfer matrix. Generally, the more the
absent power products are, the lower the order of the
resultant realization is. In the best case, as shown in
the next section, a minimal realization, or more
precisely, an absolutely minimal realization [11,16],
can be obtained, which may be viewed as a lower
bound of the order due to our procedure.

4. EXAMPLES AND DISCUSSIONS

Though the procedure described above seems
complicated, the basic idea adopted is in fact very
simple. To help the reader to grasp the essence of the
idea, we first illustrate the procedure by a simple
SISO (single-input single-output) example.

Example 1: Consider a strictly causal 2D system
given by the transfer function G(z1,z,)= b(z,2y)

la(zy,z,) where

2
a(zy,zy) =1+ a921 +ag12y + 112123 + apy 23,

b(z),2p) =bioz1 +bo123 + 1212,



On Realization of 2D Discrete Systems by Fornasini-Marchesini Model 635

Let é(zl,zz) = Va(z,2y) = X(21,2,)/U(zy,2,),
a (z;,zy)=1-a(z),2,) . Then, we have

X(Zlﬂzz):&(ZlﬂzZ)X(ZIDZ2)+U(Z]7ZZ)
2
)
Z1Z.
=[—agy =1 —ap; a0 " * | X(z1,25)
)
il
+U(z7,2)
2 Dyr¥X (2, 2)+ U7, 1)

Note that ¥ defined above has already satisfied
conditions (a), (b) and (c) stated previously, and it is
ready to verify that, if any of the conditions is not
satisfied, the operations shown below for construction
of a realization will never be possible.

As zX=DpyrzVX+2z,U, i=12, it is easy to
see that the following relation holds.

7 o 0 0 0
72 0 0 1 0
23 =
S I T S R T
4 “4p TA1 4 9o
0 0 1 0 Z%
0 0 0 0
+ EN P (ETEY
—4dn A1 4D 9o 2
0 0 0 0 P
0 0
0
Hlolat 12 U(z,2)
1 0

(A7 + 4H2)VYX(7,2)+(Biz + Bz, 2).

Note that 4 can be expressed as
+B,Dyr, 7=1,2, where

4= Ay

Ao =

S O o O
o o o O
OO = O
[ R e B N =
o o o =
O O o O

which are just the ones defined in the algorithms and
can be constructed by the method described there.
Now, it is easy to see that

Az,2)=10 & by bo]¥ = Nyr¥

and

p X(z1,2) _g 1
U(z,2,) a(zy,25)
=(I - 4z - 42,)" (Biz + By2)).

Letting C = Ngr, we have that

1 1
G(z1,22) =b(z,2,) =CY¥
0(21,22) a(ZpZz)

=C(I - 4z - 425) ' (Biz + By2y).

The algorithms shown in the previous section are in
fact a kind of extension and implementation of the
method described in the above example, by further
considering all possible cases where the initial ‘¥
constructed from the power products in the given
transfer function or transfer matrix does not satisfy the
conditions of (b) and (c).

To verify and illustrate the proposed algorithms,
consider now the following example.

Example 2: Consider the 2D transfer matrix:

W(Z]aZZ) =

bz +bpzy by 12y
1+ allzl + a1221 ZZ

1 + 021Z2 + 022 Zl 222
b312; + b3p712) by12y

1+a1121 + 212y 1+a2122 +ay g 222

Aright MFD W =N RD,}] can be given by

Dg(z1,27) =
F+allzl +appz; 2y 0 }
2 b
0 1+ayzy vt ayz 2y
N | buz bz bz,
r(21,2) = b -
by1z2y+bypzizy  byizy

With N=N, and D=1-Dg, wehave

_N(Zl Z2)
F(z1,25)= ’

_D(Z] ,Zz)
[ bz + b2y b1z,

| bizthinzz bz,

—aH—dna o 0
0 2

L —ay1Zy —dyZ1 Zp

Thus the column degrees of columns 1 and 2 in
F(z,zy) are k =2 and k, =3, and the power
products occurring in the polynomial entries of the
two columns with non-zero coefficients are {z, z,,

zZ12o} and  {z,, 212 z,} , respectively. The initial
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column vectors ¥; and ¥, satisfying condition (a)
can be constructed as follows.

\Pl :[2122 2z Zl]T, lljz :[21222 Zz]T.
Apply now Algorithm 1. As
Y1) =2, Y=z ¥
conditions (b) and (c) and the calculation for i=1

will end at Step 4 and return to Step 2. However, as
oD #2¥,(2) and ¥y(1) #2,¥,(2), a new term

has to be inserted into ¥, . Since ¥,(1) = z2¥,(2),

Y1) =2,%,0),

already satisfies

zy ly, 1) = zyzo will be chosen and inserted into ‘P,
to produce the new vector

2 T
¥y =lz{z; 7123 2]

at Step 6. This new ¥, now satisfies conditions (b)

and (c), and the calculation for /=2 will finally end
at Step 5. Therefore, we have

. 2122
= diag (¥} = )
0 0 0 zzy zz, 2

For ¥ constructed above, it is ready to calculate that
D(Z],Zz)=DHT‘II, N(Zl,Zz)ZNHTLP,
where
—6112 0 —(111 0 0 0
Dyr = ’
0 0 0 k) 0 '—a21

0 0 by
0 0 0 byl

0 by by
by, b

Since only ¥;(1) =z'¥;(2) holds for ¥, it follows
from Algorithm 2 that

NHT:[

010 00 0
1 1
AQ =0 0 of, 4V=l0 0 0
000 000

On the other hand, for ¥,, as ¥,(1)=z%,(2) and
¥,(2) = /¥, (3), Algorithm 2 produces

010
@ _ @ _
AP =10 0 1|, 4=
000
It is also easy to obtain B{'=[0 0 1]7, B{P=[0 1 0],

BP=[0 0 07" and BP=[0 0 1}, since ¥,(3)=2,
lPI(Z):Zz in \P] and ‘{‘2(3)=Z2 in le . Let

Zy Zl 0 0 0 }T

. 2 . 1 2
Ay =diag{Ay), 4D, Ay = diag{4l), 42},
we can readily construct the following system matrices:

4 = 4 + B Dyr

—

0 1 0000
0 0 0|0 00
|2 0 —ay| 0 0 0O
0 0 0]0 1 0f
0 0 0]0 01
| 0 0 0]0 0 0]
Ay = Ay + B, Dyr
[0 0 O 0 0 O }
a5y 0 -, 0 0 O
0 0 0 0 0, 0
0 0 o |0 o0 o7
0 0 0 0 0 0
0 0 0 |-ap 0 -ay|

00 1/0 0 o]
000[0 00’
01 0]o 0 of
00 0[0 0 1]’

B, =diag {Bl(l),Bl(z) 1= [

B, =diag {B{V, B{Y} = [
C = NHT'

Remark 3: The order of the realization for
Example 2 produced by the procedure of [13] would
be 14 while the one by our procedure is only 6 as
shown above.

It is natural to ask if it is possible to get a minimal
realization of FM-II model by the proposed method.
For simplicity, consider only the SISO case here. Let
W(z1,20)= q(21,22)/p(21,22) and n=max(n,n,) where n,
and n, are the degrees of the polynomials ¢(z,,z;) and
p(z1,22), respectively. It is then ready to see that if the
dimension of the vector ¥ associated with W(z,z2)
under conditions (a), (b) and (c) is just equal to =,
which implies that ¥ must be in the form of

k, k
w7 =[zl”z§'" zlk”‘lzgn‘1 zlkzzg2 zllzgl] (15)

with & +h =i, i=1,2,..., n,then a minimal reali-
zation of FM-II model can be obtained by our method.
For example, when »=3, a minimal realization is
possible if the associated ¥ for a given W(z,,z;) is in
one of the following forms:

Z]3 Zg 212Z2 Zl Z%

2
212 s Z% 5 Zl ] Z% ]
7 o) &\ Z2
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2 2 2 2
IED) ) 7z, 1z
2122 , Z]ZZ N 2122 .

73 ) 7 2

The first two cases just correspond to some 1D
transfer functions in z; or z, where our method will
produce the 1D minimal realizations in controllable
canonical form. This fact means that our procedure
includes the minimal realization of 1D systems as a
special case.

Here, let us see an example for the other 2D cases.

Example 3: Let W(z,2z,)=(by 2o + by 1732, +
b12zlz%_)/ (I+agzp +ayy2125 +a1221222) . Then, it is
ready to obtain ¥ =[z2z7 z;z, z,]' and a minimal
realization (4, 4, B, B,, C) with

0 0 0 0 1 0
4=(0 0 1|, 4= 0 0 0 |

0 0 0 —a12 _all _(101
Bi=[000]", B,=[001], C=[b; by by

Remark 4: The order of the realization for
Example 3 obtained by the procedure of [13] is 9
while the order of the realization obtained here is only
3 and it is obviously the minimal one.

Remark 5: Once a state-space realization is
obtained, it is usually straightforward to get a circuit
realization by the well-known techniques (see, e.g.,
[3,16,17]). For instance, from the state-space
realization of Example 3, we have that

29l (hak) = X (hbk - 1)9
x(hk)= x3(h-1k),

X3 (h, k) = TappX (h,k - 1) — 11Xy (h, k- 1)
—ap1X3 (h, k- 1) + u(h, k— 1)

It is easy to see that a circuit realization corresponding
to the above result can be given as follows.

»(hk)

Fig. 1. A circuit realization for Example 3.

5. CONCLUSIONS

A constructive state-space realization procedure has
been proposed for 2D systems which may produce
FM-II local state-space model realization with much
lower order than those by the procedure given in [13].
The main idea adopted in the proposed procedure is to
identify the power products that are necessary for
construction of a realization whereas discarding those
redundant power products so that a realization with
lowest possible order can be achieved for the specified
transfer function or transfer matrix. The condition for
minimal realization has also been given in (15), by
which one can explicitly identity all the classes of the
systems for a certain order » that can be minimally
realized by the proposed procedure, even before
actually conducting the realization. Nontrivial
examples have been given to illustrate the
effectiveness and the advantages of the proposed
realization procedure.

Finally, it is worth pointing out that when we get a
realization with a certain order, say », which is not the
absolutely minimal one, we can neither infer that the
considered system has no an absolutely minimal
realization, nor tell if # is the minimal one among all
the possible realizations. Therefore, we face the same
difficulty as in the case for Reosser model realization
[3,9,11,12,14-17]). To establish a necessary and
sufficient condition to verify the minimality of an » D
(n2>2) realization is still a very challenging open

problem.
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