Preparation and Biocompatibility of 6-amino-6-deoxychitosan for Immobilization of Epidermal Growth Factor

세포성장인자 고정화를 위한 6-amino-6-deoxychitosan의 제조와 생체적합성

  • Son, Tae Il (Department of Biotechnology, University of Chung-Ang) ;
  • Park, Se Hoon (Department of Biotechnology, University of Chung-Ang) ;
  • Kang, Hahk Soo (Department of Biotechnology, University of Chung-Ang) ;
  • Jang, Eui Chan (Department of Orthopaedic Surgery, College of Medicine, University of Chung-Ang)
  • 손태일 (중앙대학교 생명공학과) ;
  • 박세훈 (중앙대학교 생명공학과) ;
  • 강학수 (중앙대학교 생명공학과) ;
  • 장의찬 (중앙대학교 의과대학 정형외과)
  • Received : 2004.09.20
  • Accepted : 2005.02.21
  • Published : 2005.04.10

Abstract

Chitosan derivatives, 6-amino-6-deoxychitosan (6A6DC) was successively prepared as a reactive carbohydrate for the stabilization of epidermal growth factor (EGF) by the reactions of chitosan with tosyl chloride, sodium azide, and lithium aluminum tetrahydride. The structure of 6A6DC was confirmed by EA, FT-IR, $^1H-NMR$ and $^{13}C\{^1H\}-NMR$. The degree of substitution (ds) of amino groups in 6A6DC was determined to be 0.7. 6A6DC did not show any cytotoxicity on the normal human dermal fibroblast (NHDF) proliferation at least in the range tested (0.3 g/mL 600 g/mL) and was considered as a suitable material for the stabilization of EGF against proteolytic degradation due to its non-cytotoxicity and high reactivity.

Chitosan유도체인 6-amino-6-deoxychitosan (6A6DC)은 상피세포 성장인자(EGF)를 안정화시키기 위한 하나의 당으로써, tosyl chloride, sodium azide 그리고 lithium aluminum tetrahydride와의 반응으로부터 성공적으로 제조되었다. 이것의 구조는 원소분석, FT-IR, $^1H$ NMR 및 $^{13}C\{^1H\}$ NMR에 의해 확인되었다. 6A6DC는 amino기의 치환율이 0.7로 나타났으며, $0.3{\mu}g/mL{\sim}600{\mu}g/mL$의 농도범위에서 normal human dermal fibroblast (NHDF)가 증식하는데 어떠한 세포독성도 나타내지 않았다. 따라서, 6A6DC는 자체의 세포무독성과 높은 반응성으로 인하여 단백질 분해효소로부터 EGF를 안정화시키는데 적합한 재료라고 사료된다.

Keywords

Acknowledgement

Supported by : 중앙대학교

References

  1. Y. W. Cho, Y. N. Cho, S. H. Chung, G. Yoo, and S. W. Ko, Biomaterials, 20, 2139 (1999) https://doi.org/10.1016/S0142-9612(99)00116-7
  2. P. C. Berscht, B. Nies, A. Liebendorfer, and J. Kreuter, Biomaterials, 15, 593 (1994) https://doi.org/10.1016/0142-9612(94)90209-7
  3. R. A. A. Muzzarelli, C. Zucchini, P. Ilari, A. Pugnaloni, M. Mattioli-Belmonte, G. Biagini, and C. Castaldini, Biomaterials, 14, 925 (1993) https://doi.org/10.1016/0142-9612(93)90134-N
  4. E. C. Jang, K. H. Lee, S. I. Chung, and T. I. Son, J. of Korean Orthopaedic Research Society, 6, 250 (2003)
  5. B. H. Lee, B. O. Jung, T. I. Son, and C. H. Kim, 한국키틴키토산학회지, 8, 24 (2003)
  6. X. G. Chen, Z. Wang, W. S. Liu, and H. J. Park, Biomaterials, 23, 4609 (2002) https://doi.org/10.1016/S0142-9612(02)00207-7
  7. X. Wang, J. Ma, Y. Wang, and B. He, Biomaterials, 22, 2247 (2001) https://doi.org/10.1016/S0142-9612(00)00413-0
  8. K. Hattori, T. Yoshida, H. Nakashima, M. Premanathan, R. Aragaki, T. Mimura, Y. Kaneko, N. Yamamoto, and T. Uryu, Carbohydrate Research, 312, 1 (1998) https://doi.org/10.1016/S0008-6215(98)00198-0
  9. K. Kurita, S. Inoue, and S. Nishimura, Polym. J., 29, 937 (1991)
  10. N. Nishi, S. Nishimura, A. Ebina, A. Tsutsumi, and S. Tokura, Int. J. Biol. Macromol., 6 (1984)
  11. R. Trujillo, Carbohydrate Research, 7, 483 (1968) https://doi.org/10.1016/S0008-6215(00)82969-9
  12. K. R. Holme and A. S. Perlin, Chitosan N-sulfate. A water-soluble polyelectrolyte, Carbohydrate Research, 302, 7 (1997) https://doi.org/10.1016/S0008-6215(97)00117-1
  13. K. Okumura, Y. Kiyohara, F. Komada, S. Iwakawa, M. Hirai, and T. Fuwa, Pharm. Res., 7, 1289 (1990) https://doi.org/10.1023/A:1015946123697
  14. G. Carpenter and S. Cohen, Ann. Rev. Biochem., 48, 193 (1979) https://doi.org/10.1146/annurev.bi.48.070179.001205
  15. J. J. Marshall, TIBS., 3, 79 (1978)
  16. H. K. Blomhoff and T. B. Christensen, Biochemica et Biophysica Acta., 743, 401 (1983)
  17. A. Andersson, A. Holmberg, J. Carlsson, J. Carlsson, J. Ponten, and B. Westermark, Int. J. Cancer, 47, 439 (1991) https://doi.org/10.1002/ijc.2910470322
  18. T. I. Son, S. H. Park, H. S. Kang, Y. S. Son, C. H. Kim, and E. C. Jang, J. Ind. Eng. Chem., 11, 34 (2005)
  19. V. P. Karrer and W. Wehrli, Helv. Chim. Acta., 9, 591 (1926) https://doi.org/10.1002/hlca.19260090174
  20. I. Sakurada, J. Soc. Chem. Ind. Jpn., 32, 11 B (1929)
  21. P. C. Scherer and J. M. Field, Rayon Text. Month., 22, 51 (1941)
  22. J. F. Haskins and A. H. Weinstein, J. Org. Chem., 19, 67 (1954) https://doi.org/10.1021/jo01366a012
  23. T. Sato, T. Nagasaki, N. Sakairi, and S. Shinkai, Chem. Lett., 33, 3 (2004)
  24. T. Sato, T. Ishii, Y. Okahata, and T. Sato, Biochim. Biophys. Acta., 51, 1514 (2001)
  25. C. Liu and H. Baumann, Carbohydrate Research, 337, 1297 (2002) https://doi.org/10.1016/S0008-6215(02)00132-5
  26. R. M. Silverstein, G. C. Bassler, and T. C. Morrill, Spectrometric identification of organic compounds, ed. O. Yamamoto, M. Youichiro and A. Shyun, 東京化學同人,  Japan (1983)
  27. F. Rolla, J. Org. Chem., 47, 4327 (1982) https://doi.org/10.1021/jo00143a031
  28. R. M. Rosser and D. J. Faulkner, J. Org. Chem., 49, 5157 (1984) https://doi.org/10.1021/jo00200a029
  29. C. Smolinsky, J. Am. Chem. Soc., 82, 4717 (1961)
  30. D. H. R. Barton and L. R. Morgan, Jr, The photolysis of azides, Photochemical transformations. Part XII., 3313 (1961)
  31. J. H. Boyer and P. A. Cantor, Chem. Rev., 54, 1 (1954) https://doi.org/10.1021/cr60167a001
  32. P. A. S. Smith and B. B. Brown, J. Am. Chem. Soc., 73, 2435 (1951) https://doi.org/10.1021/ja01150a008
  33. R. M. Moriarty and M. Rahman, Tetrahedron, 21, 2877 (1965) https://doi.org/10.1016/S0040-4020(01)98373-5
  34. R. H. Hasek, E. U. Elam, and J. C. Martin, J. Org. Chem., 26, 1882 (1961)
  35. S. Sabnis and L. B. Block, Polym. Bull., 39, 67 (1997) https://doi.org/10.1007/s002890050121
  36. L. heux, J. Bruguerotto, M, Desbrieres, F. Versali, and M. Rinaudo, Biomacromol., 1, 746 (2000) https://doi.org/10.1021/bm000070y
  37. T. Fukamizo, K. J. Kramer, D. D. Mueller, J. Schaefer, J. Garbow, and G. S. Jacob, Arch. Biochem. Biophys., 249, 15 (1986) https://doi.org/10.1016/0003-9861(86)90555-2
  38. G. I. Howling, P. W. Dettmar, P. A. Goddard, F. C, Hampson, M. Dornish, and E. J. Wood, Biomaterials, 22, 2959 (2001) https://doi.org/10.1016/S0142-9612(01)00042-4
  39. D. Klemm, B. Philipp, T. Heinze, U. Heinze, and W. Wagenknecht, In comprehensive Cellulose Chemistry, 2, 115 (1998)