Characterization of biotin-avidin recognition system constructed on the solid substrate

  • Lim, Jung-Hyurk (Department of Polymer Science and Engineering, Chungju National University)
  • Received : 2005.07.25
  • Accepted : 2005.10.10
  • Published : 2005.12.26

Abstract

The biotin-avidin complex, as a model recognition system, has been constructed through N-hydroxysuccinimide(NHS) reaction on a variety of substrates such as a smooth Au film, electrochemically roughened Au electrode and chemically modified mica. Stepwise self-assembled monolayers (SAMs) of biotin-avidin system were characterized by surface-enhanced resonance Raman scattering (SERRS) spectroscopy, atomic force microscopy (AFM) and surface plasmon resonance (SPR). A strong SERRS signal of rhodamine tags labeled in avidin from the SAMs on a roughened gold electrode indicated the successful complex formation of stepwise biotin-avidin recognition system. AFM images showed the circular shaped avidin aggregates (hexamer) with ca. $60{\AA}$ thick on the substrate, corresponding to one layer of avidin. The surface coverage and concentration of avidin molecules were estimated to be 90% and $7.5{\times}10^{-12}mol/cm^2$, respectively. SPR technique allowed one to monitor the surface reaction of the specific recognition with high sensitivity and precision.

Keywords

References

  1. J. M. Lehn, Angew. Chem., 100, 91(1988) https://doi.org/10.1002/ange.19881000110
  2. A. Ulman, 'An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-assembly' Academic Press, New York (1991)
  3. A. A. Karyakin, G. V. Presnova, M. Y. Rubtsova and A. M. Dgorov, Anal. Chem. 72, 3850(2000)
  4. K. L. Prime and G. M. Whitesides, Science, 252, 1164 (1991) https://doi.org/10.1126/science.252.5009.1164
  5. N. M. Green, Biochem. J., 89, 599(1963) https://doi.org/10.1042/bj0890599
  6. M. Ahlers, R. Blankenburg, D. W. Grainger, P. Meller, H. Ringsdorf and C. Salesse, Thin Solid Films, 180, 93(1989) https://doi.org/10.1016/0040-6090(89)90059-X
  7. R. Blankenburg, P. Meller, H. Ringsdorf and C. Salesse, Biochemistry, 28, 8214(1989) https://doi.org/10.1021/bi00446a037
  8. F. J. Schmitt, A. L. Weisenhorn, P. K. Hansma and W. Knoll, Thin Solid Films, 210, 666(1992) https://doi.org/10.1016/0040-6090(92)90369-M
  9. F. J. Schmitt and W. Knoll, Biophys. J., 60, 716(1991) https://doi.org/10.1016/S0006-3495(91)82101-4
  10. S. A. Darst, A. Ahlers, P. H. Meller, E. W. Kubalek, R. Blankenburg, H. O. Ribi, H. Ringsdorf and R. D. Kornberg, Biophys. J,. 59, 387(1991) https://doi.org/10.1016/S0006-3495(91)82232-9
  11. L. Haussling, H. Ringsdorf, F. J. Schmitt and W. Knoll, Langmuir 7, 1837(1991) https://doi.org/10.1021/la00057a001
  12. C. A. Goss, D. H. Charych and M. Majda, Anal. Chem., 63, 85(1991) https://doi.org/10.1021/ac00001a018
  13. E. Z. Kretschmann, Phys. 241, 313(1971) https://doi.org/10.1007/BF01395428
  14. S. H. Kim, K. S. Ock, J. H. Im, J. H. Kim, K. N. Koh and S. W Kang, Dyes and Pigments, 46, 55(2000) https://doi.org/10.1016/S0143-7208(00)00029-2
  15. O. Heavens, 'Optical Properties of Thin Solid Films', Dover, NewYork (1991)
  16. P. Hildebrandt and M. Stockburger, J. Phys. Chem., 88, 5935(1984) https://doi.org/10.1021/j150649a028
  17. M. L Spinke, F. J. Schmitt, H. J. Guder, L. Angermaier and W. Knoll, J. Chem. Phys., 99, 7012(1993) https://doi.org/10.1063/1.465447
  18. L. Haussling, B. Michel, H. Ringsdorf and H. Rohrer, Angew. Chem. Int. Ed. Engl. 30, 569(1991) https://doi.org/10.1002/anie.199109911
  19. P. C. Weber, D. H. Ohlendorf, J. J. Wendoloski and F. R. Salemme, Science, 243, 85(1989) https://doi.org/10.1126/science.2911722
  20. K. L. Wolf, 'Physik und Chemie der Grenzflachen', Vol. 2, Springer, Berlin, 143(1959)