Size and Rising Velocity of Liquid Drops in Liquid-Liquid Fluidized-Bed Extractors

유동층 액-액 추출기에서 액적의 크기 및 상승속도

  • Jung, Sung-Hyun (School of Chemical Engineering Chungnam National University) ;
  • Kim, Jae-Han (School of Chemical Engineering Chungnam National University) ;
  • Kang, Tae-Gyu (School of Chemical Engineering Chungnam National University) ;
  • Kang, Yong (School of Chemical Engineering Chungnam National University) ;
  • Kim, Sang Done (Department of Biomolecular and Chemical Engineering KAIST)
  • 정성현 (충남대학교 화학공학부) ;
  • 김재한 (충남대학교 화학공학부) ;
  • 강태규 (충남대학교 화학공학부) ;
  • 강용 (충남대학교 화학공학부) ;
  • 김상돈 (한국과학기술원 생명화학공학과)
  • Received : 2004.05.27
  • Accepted : 2004.10.19
  • Published : 2005.02.10

Abstract

Characteristics of size, rising velocity and distribution of liquid drops have been investigated in a immiscible liquid-liquid fluidized-bed whose diameter was 0.102 m and 2.5 m in height. Effects of velocities of dispersed (0~0.04 m/s) and continuous (0.02~0.14 m/s) liquid phases and fluidized particle size (1, 2.1, 3 or 6 mm) on the liquid drop properties in the extractor have been determined. The resultant flow behavior of liquid drops became more complicated with increasing the velocity of dispersed or continuous liquid phase. The resultant flow behavior of liquid complicated with increasing the velocity of dispersed or continuous liquid phase. The resultant flow behavior of liquid drops depended strongly upon the drop size and its distribution. The drop size increased with increasing dispersed phase velocity, but decreased with increasing particle size. However, the size of liquid drop exhibited a local maximum with increasing continuous liquid velocity. The size and rising velocity of liquid drops have been well correlated in terms of operating parameters.

직경이 0.102 m이고 높이가 2.5 m인 유동층 액-액 추출기에서 액적의 크기와 분포 그리고 상승속도의 특성에 대하여 연구하였다. 분산상(0~0.04 m/s)과 연속상(0.02~0.14 m/s)의 유속변화, 그리고 유동고체 입자의 크기변화(1.0, 2.1, 3.1, 6.0 nm)에 따른 액적의 특성을 검토하였다. 액적의 흐름 거동은 추출기 내부에서 액적의 흐름 거동은 분산상과 연속상의 증가와 액적의 크기에 따라 상당히 영향을 받았다. 액적의 크기는 분산상의 속도가 증가함에 따라 증가하였지만, 유동입자의 크기가 증가함에 따라 따라서는 감소하는 경향을 나타내었다. 그러나 연속상의 유속이 증가함에 따른 액적의 크기는 국부적인 최대값을 나타낸 후 감소하는 경향을 나타내었다. 액적의 크기와 상승속도는 실험변수들과 잘 상관됨을 알 수 있었다.

Keywords

References

  1. P. Dakshinamurty, K. Veerabhadrarao, and A. B. Venkatarao, I & EC Process Des. Dev., 18, 638 (1979) https://doi.org/10.1021/i260072a011
  2. P. Dakshinamurty, V. Subrahmanyam, R. V. Prasadarao, and D. Vijayasaradhi, I & EC Process Des. Dev., 23, 132 (1984) https://doi.org/10.1021/i200024a022
  3. S. D. Kim, M. J. Lee, and J. H. Han, Can. J. Chem. Eng., 67, 276 (1989) https://doi.org/10.1002/cjce.5450670214
  4. A. M. Dehkordi, J. Chem. Eng., 87, 227 (2002) https://doi.org/10.1016/S1385-8947(01)00229-7
  5. B. Ghosh, D. C. Makherjee, S. Bhattacharjee, and B. Chaudhure, Can. J. Chem. Eng., 79, 148 (2001) https://doi.org/10.1002/cjce.5450790123
  6. P. S. Song, H. T. Kim, Y. Kang, S. J. Kim, and S. D. Kim, J. Korean Ind. Eng. Chem., 14, 807 (2003)
  7. P. S. Song, H. T. Kim, S. M. Son, Y. Kang, S. J. Kim, and S. D. Kim, J. Korean Ind. Eng. Chem., 14, 903 (2003)
  8. S. D. Kim and Y. Kang, Advances in Engineering Fluid Mechanics Series, N.P. Cheremisinoff ed., Gulf Pub. Co., 845 (1996)
  9. A. M. Dehkordi, AICHE J. 48, 2230 (2002) https://doi.org/10.1002/aic.690481013
  10. Y. Kang, J. S. Kim, K. J. Woo, C. H. Nam, S. H. Kim, and S. D. Kim, Hwahak Konghak, 36, 275 (1998)
  11. S. D. Kim, J. S. Kim, C. H. Nam, S. H. Kim, and Y. Kang, Chem. Eng. Sci., 54, 5173 (1999) https://doi.org/10.1016/S0009-2509(99)00236-5
  12. K. S. Shin, C. K. Lee, S. H. Kang, Y. Kang, S. D. Kim, and S. J. Kim, J. Korean Ind. Eng. Chem., 14, 896 (2003)
  13. B. A. A. van Woezik and K. R. Westerterp, Chem. Eng. Process, 39, 299 (2000) https://doi.org/10.1016/S0255-2701(99)00089-6
  14. S. D. Kim, D. Y. Kim, and J. H. Han, Can. J. Chem. Eng., 72, 222 (1994) https://doi.org/10.1002/cjce.5450720207
  15. K. J. Woo, J. S. Kim, Y. Kang, and S. D. Kim, Chem. Eng. Technol., 24, 829 (2001) https://doi.org/10.1002/1521-4125(200108)24:8<829::AID-CEAT829>3.0.CO;2-Y
  16. A. Matsuura and L. S. Fan, AIChE J., 30, 894 (1984) https://doi.org/10.1002/aic.690300604
  17. L. S. Fan, Butterworths, Stonehair, MS (1989)
  18. J. A. Golding and D. W. Koren, Hydrometallurgy, 33, 227 (1993) https://doi.org/10.1016/0304-386X(93)90017-8