Characterization of Polymer Blends of Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) for DMFC

직접메탄올 연료전지용 Poly(ether sulfone)/Sulfonated Poly(ether ether ketone) 블렌드 막의 특성 연구

  • Cheon, Hun Sang (Department of Chemical Engineering, Hanbat National University) ;
  • Lee, Choong Gon (Department of Chemical Engineering, Hanbat National University) ;
  • Hong, Seong Uk (Department of Chemical Engineering, Hanbat National University)
  • Received : 2004.09.20
  • Accepted : 2004.11.09
  • Published : 2005.02.10

Abstract

Sulfonated poly(ether ether ketone) (SPEEK) was blended with poly(ether sulfone) (PES) at various compositions. To investigate the possibility of using the blend membranes as polymer electrolyte membranes for direct methanol fuel cell, the blend membranes were characterized in terms of methanol permeability, proton conductivity, ion exchange capacity, and water content. Both proton conductivity and methanol permeability of SPEEK were relatively high. As the amount of PES increased, methanol permeability decreased more rapidly compared to proton conductivity. The experimental results indicated that the blend membrane with 40 wt% PES was the best choice in terms of the ratio of proton conductivity to methanol permeability.

Poly(ether ether ketone)을 설폰화시킨 후 poly(ether sulfone) (PES)과 다양한 조성으로 혼합하여 블렌드 막을 제조하였고, 직접메탄올 연료전지(DMFC; Direct Methanol Fuel Cell)용 고분자 전해질 막으로의 응용 가능성을 살펴보기 위하여 조성의 변화에 따른 메탄올 투과도, 수소 이온 전도도, 이온 교환 용량, 그리고 함수율의 변화를 살펴보았다. Sulfonated poly(ether ether ketone) (SPEEK)의 경우 수소 이온 전도도는 비교적 우수하였으나 메탄올 투과도 역시 비교적 높았다. 그러나, PES의 양이 증가함에 따라 수소 이온 전도도보다 메탄올 투과도가 급격히 감소하여서 PES의 양이 40%일 때 가장 좋은 선택성을 나타내었다.

Keywords

Acknowledgement

Supported by : 한밭대학교

References

  1. K. Kordesch and G. Simader, Fuel Cells and their Applications, VCH, Weinheim (1996)
  2. J. Larminie and A. Dicks, Fuel Cell Systems Explained, John Wiley & Sons, West Sussex, England (2000)
  3. Y. M. Lee and H. B. Park, Membr. J., 10, 103 (2000)
  4. S. Koter, P. Pitrowski, and J. Kerres, J. Membr. Sci., 153, 83 (1999) https://doi.org/10.1016/S0376-7388(98)00242-7
  5. J. Cruickshank and K. Scott, J. Power Source, 70, 40 (1998) https://doi.org/10.1016/S0378-7753(97)02626-8
  6. A. Heinzel and v. M. Barragan, J. Power Source, 84, 70 (1999) https://doi.org/10.1016/S0378-7753(99)00302-X
  7. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, J. Membr. Sci., 173, 17 (2000) https://doi.org/10.1016/S0376-7388(00)00345-8
  8. F. G. Wihelm, I. G. MPunt, N. F. A. van der Vegt, H. Strathnamn, and M. Wessling, J. Membr. Sci., 199, 167 (2002) https://doi.org/10.1016/S0376-7388(01)00695-0
  9. C. Manea and M. Mulder, J. Membr. Sci., 206, 443 (2002) https://doi.org/10.1016/S0376-7388(01)00787-6
  10. H. S. Cheon, M. Oh, and S. U. Hong, Membr. J., 13, 47 (2003)
  11. W. Cui, J. Kerres, and G. Eigenberger, Sep. Puri. Tech., 14, 145 (1998) https://doi.org/10.1016/S1383-5866(98)00069-0
  12. K. D. Kreuer, Solid State Ionics, 97, I (1997) https://doi.org/10.1016/S0167-2738(97)00082-9
  13. Q. H. Guo, P. N. Pintauro, H. Tang, and S. O'connor, J. Membr. Sci., 154, 175 (1999) https://doi.org/10.1016/S0376-7388(98)00282-8
  14. N. Cornet, G. Beandoing, and G. Gebel, Separ. Puri. Tech., 22, 681 (2001) https://doi.org/10.1016/S1383-5866(00)00184-2
  15. T. Lehtinen, G. Sundholrn, and F. Sundholm, J. Appl. Electrochem., 29, 677 (1999)
  16. F. Helmer and M. Metzmann, European Patent 0574 791 A2 ( 1993)
  17. K. Scott, W. M. Taama, and P. Argynopoulos, J. Membr. Sci., 171, 119 (2000) https://doi.org/10.1016/S0376-7388(99)00382-8
  18. B. R. Pivovar, Y. X. Wang, and E. L. Cussler, J. Membr. Sci., 154, 155 (1999) https://doi.org/10.1016/S0376-7388(98)00264-6