Control of the CaCO3 Saturation Index Parameters for Protecting the Corrosion of Waterworks Pipe

상수도관 부식방지를 위한 탄산칼슘 포화지수(LI) 인자 제어에 관한 연구

  • Park, Young-Bok (Department of Chemical Engineering, Hanyang University) ;
  • Kong, Sung-Ho (Department of Chemical Engineering, Hanyang University)
  • Received : 2005.01.03
  • Accepted : 2005.04.12
  • Published : 2005.06.10

Abstract

Calcium Carbonate Saturation Index (LI: Langelier Index), an indicator of $CaCO_3(s)$ saturation, indicates corrosiveness of drinking water and it has been used to monitor drinking water conditions in USA, E.U, and Japan. The objective of this research was to measure LI parameters including water temperature, pH, total alkalinity, calcium ion concentration, and electric conductivity, and to evaluate possibility of using LI in domestic system. Results showed that water temperature varied from 2.0 to $26^{\circ}C$ during 15 months, indicating an average annual temperature of $23.9^{\circ}C$. Total alkalinity was from 20 to 45 mg/L. The concentration difference between total alkalinity and $HCO_3{^-}$ value was hardly observed; the concentration of total alkalinity can be replaced by that of $HCO_3{^-}$. Tap water had a medium corrosiveness since LI values were from 2.0 to 0.5. To reduce the corrosiveness and to increase LI values of drinking water, the results of this study showed that chemicals such as $Ca(OH)_2$, $CaCO_3$, NaOH, or $NaHCO_3$ should be added to water treatment plants.

탄산칼슘 포화지수(LI: Langelier Index)는 탄산칼슘의 포화정도로서 수돗물의 부식성을 나타내며 수도관 부식방지를 위해 미국, 유럽, 일본 등은 수도법에 의해 관리되고 있지만 국내는 아직 도입되지 않았다. 본 연구는 LI의 국내 도입 타당성을 검토하기 위해 LI인자(5개항목: 수온, pH, 총알칼리도, 칼슘이온, 전기전도도)들을 측정하고 LI값을 산출하였다. 수온은 연간 $2.0{\sim}26^{\circ}C$, 연평균 $23.9^{\circ}C$로 나타났다. 총알칼리도는 30 mg/L (as $CaCO_3$)로 나타났으며, 총알칼리도를 $HCO_3{^-}$ 농도 값으로 대체가능성을 검토한 결과 농도 차가 거의 없는 것으로 나타났다. LI값은 2.0~-0.5로 나타나 부식성을 가지고 있는 것으로 나타났으며, 수돗물 부식성을 감소시키기 위해 정수장에서 $Ca(OH)_2$, $CaCO_3$, NaOH, $NaHCO_3$ 등을 투입할 필요가 있는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 서울특별시 상수도연구소

References

  1. Bureau of Waterworks Tokyo Metropolitan Government, Water Supply in Tokyo, Tokyo (1998)
  2. T. Hedberg and E. Johnsson, Water Supply, 5, 20 (1987)
  3. AWWA, Standard Methods for the Examination of Water and Wastewater, 20. 2-30, APHA, Washington, D.C. (2000)
  4. D. A. Jones, Principles and Prevention of Corrosion, 2, 80, Prentice Hall, New Jersey (1996)
  5. S. K. Song, I. S. Park, M. G. Lee, and C. S. Joo, Chemical Reaction Engineering, 61, Heejoungdang, Seoul (1990)
  6. E. E. Stansbury and R. A. Buchanan, Fundamentals of Electrochemical Corrosion, 5, ASM International, Ohio (2000)
  7. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, 31, NACE International Cebelcor, Brussels (1974)
  8. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, J. A. Franklin, 307, NACE International, Houston (1974)
  9. L. N. Plummer and E. Busenberg, Geochim., Cosmochim., 46, 1011 (1983) https://doi.org/10.1016/0016-7037(82)90056-4
  10. W. Stumm, J. ASCE Sanitary Engrg. Div., 86, SA6:27 (1960)
  11. T. E. Larson and R. V. Skold, JAWWA, 49:12, 1565 (1958)
  12. O. Rice, JAWWA, 39:6, 552 (1947)
  13. L. Hidmi, D. Gladwell, and M. Edwards, Report to the City of Boulder, Colorado (1994)
  14. L. S. McNeil and M. Edwards, JAWWA, 93:7, 88 (2001)
  15. R. D. Kashinkunti et al, Proceeding, AWWA WQAC, Tampa (1999)
  16. E. A. Vik, R. A. Ryder, I. Wagner, and J. F. Ferguson, Internal Corrosion of Water Distribution Systems, M. K. Kozyra, 2, 389, AWWARF, Denver (1996)
  17. C. N. Sawyer and P. L. McCarty, Chemistry for Environmental Engineering, ed. M. J. Yu, 1, 379, DongHwa Tech., Seoul (1995)
  18. Ministry of Environment, Technical Support Proposals for Improvement of Older Water Pipe, 86, Seoul (2002)