A Study on Physicochemical Properties of Epoxy Coatings for Liner Plate in Nuclear Power Plant

원자력발전소 격납건물 철재면 에폭시 도장시편의 물리화학적 특성 평가

  • Lee, Jae-Rock (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Seo, Min-Kang (Advanced Materials Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Sang-Kook (Structural Systems & Site Evaluation, Korea Institute of Nuclear Safety) ;
  • Lee, Chul-Woo (Korea Power Engineering Company, Ltd.) ;
  • Park, Soo-Jin (Advanced Materials Division, Korea Research Institute of Chemical Technology)
  • 이재락 (한국화학연구원 화학소재연구부) ;
  • 서민강 (한국화학연구원 화학소재연구부) ;
  • 이상국 (한국원자력안전기술원 구조부지실) ;
  • 이철우 (한국전력기술(주)) ;
  • 박수진 (한국화학연구원 화학소재연구부)
  • Received : 2005.07.18
  • Accepted : 2005.09.08
  • Published : 2005.12.10

Abstract

In this work, the thermal properties of epoxy coating system on the liner plate in the containment structure of nuclear power plants had been examined by irradiation and design basis accident (DBA) conditions. The effect of immersion in hot water on adhesion strength of the coating system had been also studied. The glass transition temperature ($T_g$) and thermal stability of ET-5290/carbon steel A 32 epoxy coating systems were measured by DSC and TGA analyses, respectively. Contact angle measurements were used to determine the effect of immersion on the surface energetics of epoxy coating system, with a viewpoint of surface free energy. Adhesion tests were also executed to evaluate the adhesion strength at interfaces between carbon steel plate and epoxy resins. As a result, it was found that the irradiation led to an improvement of internal crosslinked structure in cured epoxy systems, resulting in significantly increasing the thermal stability, as well as the $T_g$. Also, the immersion in hot water made a role in the post-curing of epoxy resins and increased the mechanical interlocking of the network system, resulting in increasing the adhesion strength of the epoxy coating system.

본 논문에서는 원자력 발전소 격납건물 철재면에 적용되는 에폭시 코팅 시스템의 열적 특성에 관하여 방사선 조사 및 설계기준사고(DBA) 시험을 통하여 고찰하였으며, 동일 시스템의 접착강도에 대한 수중침적처리의 영향에 관해서도 알아보았다. ET-5290/carbon steel A 32 에폭시 도장 시스템의 유리전이온도($T_g$)와 열안정성은 DSC와 TGA를 가지고 각각 측정하였으며, 표면에너지적 특성에 대한 수중침적처리의 영향은 접촉각 측정을 통하여 알아보았다. 또한, 카본 철재면과 에폭시 수지간의 계면접착강도를 평가하기 위하여 부착력 시험을 행하였다. 결과로서, 방사선 조사 처리는 경화된 에폭시 도장 시스템에 내부 가교구조를 향상시켜 에폭시 도장 시스템의 $T_g$ 증가 및 열안정성을 향상시켰으며, 또한 경화 시스템의 수중침적처리시 후경화 효과로 인한 기계적 맞물림의 증가로 인하여 전체적으로 시스템의 접착강도의 증가를 가져왔다.

Keywords

References

  1. L. S. Penn and T. T. Chiao, Handbook of Composites, ed. G. Lubin, 57, Van Norstrand Reinhold Co., New York (1982)
  2. R. S. Bauer, Epoxy Resin Chemistry, ACS Advanced in Chemistry Series No. 114, American Chemical Society, Washington DC (1979)
  3. H. Lee and K. Nevile, Handbook of Epoxy Resin, McGraw-Hili, New York (1967)
  4. L. T. Manzione, Plastic Packaging of Microelectronic Devices, Van Nostrand Reinhold, New York (1990)
  5. R. W. Tess, Chemistry and Technology of Epoxy Resin, ed. C. A. May, Marcel Dekker, New York (1988)
  6. R. L. Clough, Polymer Durability, Degradation, Stabilization, and Lifetime Prediction, American Chemical Society, Washington DC (1996)
  7. J. Pachner, Systematic Ageing Management Process: A Key Element for Long Term Safety, Reliability and Economy of Nuclear Power Plants. In: Trans. of the 15th International Conference on structural mechanics in reactor technology (SMiRT-15), 15-20, Seoul, Korea, August (1999)
  8. E. Friesen, J. Meseth, S. Guentay, D. Suckow, J. Lopez Jimenez, L. Herranz, V. Peyres, G. F. De Santi, A. Krasenbrink, M. Valisi, and L. Mazzocchi, Nucl. Eng. Des., 209, 253 (2001) https://doi.org/10.1016/S0029-5493(01)00408-3
  9. S. J. Park, M. K. Seo, and J. R. Lee, Nuclear Eng. Design, 228, 47 (2004) https://doi.org/10.1016/j.nucengdes.2003.05.001
  10. H. E. Kissinger, J. Res. Natl. Bur. Stds., 57, 2712 (1956)
  11. S. J. Park, Interfacial Forces and Fields: Theory and Applications, Chap. 9, ed. J. P. Hsu, Marcel Dekker, New York (1999)
  12. C. J. Tsai, W. J. Tseng, and C. S. Hsi, Ceram. Int., 28, 23 (2002) https://doi.org/10.1016/S0272-8842(01)00053-0
  13. A. Babanalbandi, D. J. T. Hill, and L. Kettle, Polym. Int., 48, 980 (1999) https://doi.org/10.1002/(SICI)1097-0126(199910)48:10<980::AID-PI257>3.0.CO;2-B
  14. H. H. Horowitz and G. Metzger, Anal Chem., 35, 1464 (1963) https://doi.org/10.1021/ac60203a013
  15. S. J. Park, M. K. Seo, and J. R. Lee, J. Polym. Sci. Polym. Chem., 38, 2945 (2000) https://doi.org/10.1002/1099-0518(20000815)38:16<2945::AID-POLA120>3.0.CO;2-6
  16. C. D. Doyle, Anal Chem., 33, 77 (1961) https://doi.org/10.1021/ac60169a022
  17. S. J. Park, M. S. Cho, J. R. Lee, and P. K. Pak, Carbon, 37, 1685 (1999) https://doi.org/10.1016/S0008-6223(99)00053-6
  18. S. J. Park and K. S. Cho, J. Colloid Interface Sci., 267, 86 (2003) https://doi.org/10.1016/S0021-9797(03)00132-2
  19. S. J. Park and H. Y. Lee, J. Colloid Interface Sci., 285, 267 (2005) https://doi.org/10.1016/j.jcis.2004.11.062