The Synthesis and the Electrochemical Properties of Al Doped $V_2O_5$

Al이 도핑된 오산화바나듐의 합성 및 전기화학적 특성

  • Park, Heai-Ku (Department of Chemical System Engineering, Keimyung University) ;
  • Joung, Ok-Young (Department of Applied Chemistry, Kyungpook National University) ;
  • Lee, Man-Ho (Department of Applied Chemistry, Kyungpook National University)
  • 박희구 (계명대학교 공과대학교 화학시스템공학과) ;
  • 정옥영 (경북대학교 공과대학 응용화학과) ;
  • 이만호 (경북대학교 공과대학 응용화학과)
  • Received : 2004.12.14
  • Accepted : 2005.04.26
  • Published : 2005.08.10

Abstract

Vanadium pentoxide xerogels with a doping ratio of $Al/V_2O_5$ ranging from 0.01 to 0.05 were synthesized by doping Al into $V_2O_5$ xerogel via the sol-gel process. By using the synthesized $Al_xV_2O_5$, the $Li/Al_xV_2O_5$ cells were assembled to investigate the chemical and electrochemical properties. Surface morphology of the $Al_xV_2O_5$ xerogel showed an anisotropic corrugated sheet-like matrix, and the interlayer distance was about $11.5{\AA}$. The IR spectra of the $Al_xV_2O_5$ revealed that the doped Al was coordinated to the vanadyl group in $V_2O_5$. The $Al_xV_2O_5$ xerogels showed enhanced reversibility and energy density compared with the $V_2O_5$ xerogel. The specific capacity of the $Al_{0.05}V_2O_5$ xerogel was more than 200 mAh/g at 10 mA/g discharge rate, and cycle efficiency was about 90% after the 31st cycling test between 1.9 V and 3.9 V.

Al이 0.01에서 0.05 몰 도핑된 오산화바나듐을 졸-겔법을 이용하여 제조하였고, Al이 도핑된 오산화바나듐의 화학적성질과 전기화학적 특성을 조사하기 위하여 $Li/Al_xV_2O_5$ 전지를 만들었다. $Al_xV_2O_5$ xerogel의 표면형상은 비등방성의 주름진 판상을 이루며 층간거리는 약 $11.5{\AA}$이었다. IR 스펙트럼에 의하면 도핑된 Al이 $V_2O_5$의 vanadyl기에 결합하고 있는 것으로 나타났다. $Al_xV_2O_5$ xerogel은 가역성과 에너지밀도가 $V_2O_5$보다 향상되었다. 또한 10 mA/g의 방전율로 얻은 $Al_{0.05}V_2O_5$ xerogel의 비용량은 200 mAh/g 이상이었으며, 1.9 V에서 3.9 V 전위영역에서 31회의 연속 충방전 실험을 한 결과 약 90%의 사이클효율을 나타내었다.

Keywords

References

  1. D. W. Murphy and P. A. Christian, Science, 205, 651 (1979) https://doi.org/10.1126/science.205.4407.651
  2. H.-K. Park and W. H. Smyrl, J. Electrochem. Soc., 141, L25 (1994) https://doi.org/10.1149/1.2054825
  3. H.-K. Park, W. H. Smyrl, and M. D. Ward, J. Electrochem. Soc., 142, 1068 (1995) https://doi.org/10.1149/1.2044133
  4. F. Coustier, J. Hill, B. B. Owens, S. Passerini, and W. H. Smyrl, J. Electrochem. Soc., 146, 1355 (1999) https://doi.org/10.1149/1.1391770
  5. M. S. Whittingham and P. Y. Zavalij, Tnt. J. Tnorg. Mat., 3, 1231 (2001)
  6. P. Soudan, J. P. Pereira-Ramos, J. Farcy, G. Gregoire, and N. Baffier, Solid State Tonics, 135, 291 (2000)
  7. F. Zhang and M. S. Whittingham, Electrochem. Commun., 2, 69 (2000) https://doi.org/10.1016/S1388-2481(99)00143-5
  8. J. Farcy, S. Maingot, P. Soudan, J. P. Pereira-Ramos, and N. Baffier, Solid State lonics, 99, 61 (1997)
  9. J. Livage, Chem. Mater., 3, 578 (1991) https://doi.org/10.1021/cm00016a006
  10. B. Alonso and J. Livage, J. Solid State Chem., 148, 16 (1999) https://doi.org/10.1006/jssc.1999.8283
  11. C. Sanchez, M. Navabi, and M. Taulelle, Mat. Res. Soc. Symp. Froc., 121, 93 (1988)
  12. M. Nabavi, C. Sanchez, and J. Livage, J. Solid State Tnorg. Chem., 28, 1173 (1991)
  13. H.-K. Park, Solid State lonics, 176, 307 (2005)