Synthesis of Blue Emitting Materials for Organic Light Emitting Device

유기발광디바이스용 청색발광재료의 합성

  • Chung, Pyung Jin (Department of Materials Science and Engineering, DanKook University) ;
  • Cho, Min Ju (Department of Materials Science and Engineering, DanKook University)
  • 정평진 (단국대학교 신소재공학과) ;
  • 조민주 (단국대학교 신소재공학과)
  • Received : 2005.03.14
  • Accepted : 2005.11.21
  • Published : 2005.12.10

Abstract

This study was based on organic electroluminescence display. Especially, DPAVBi, AVBi and DPVBi for the emitting materials were synthesized by Wittig, Wittig-Horner reaction. This reaction was conducted between phosphorous ylide and 4-(diphenylamino)benzaldehyde, 9-anthraldehyde and benzophenone. The structural property of reaction products were analyzed by FT-IR, $^1H-NMR$ spectroscopy and thermal stability, reactivity and PL property were analyzed by melting point, yield and emission spectrum, respectvely. The photoluminescence spectra of a pure DPAVBi, AVBi and DPVBi were observed at approximately 445nm, 484nm and 450nm, respectively. In this study, it was known that DPAVBi, AVBi, DPVBi had a different reaction properties according to stability of ${\alpha}$-position carbonyl group of the aldehyde, ketone.

본 연구는 유기EL의 기초연구로서, 특히 발광재료인 DPAVBi, AVBi 및 DPVBi를 Witting반응과 Wittig-Horner반응으로 합성했다. 이 반응은 Phosphorous ylide와 4-(디페닐아미노)벤즈알데히드, 9-안트라알데히드 및 벤조페논으로 행해졌다. 반응생성물의 구조적 특성은 FT-IR, 'H-NMR 스펙트로스코피로서 분석되었으며, 열적 안정성, 반응성 및 PL특성은 융점, 수득율 및 발광스펙트럼으로 각각 분석되었다. 순수한 DPAVBi, AVBi 및 DPVBi의 광전발광스펙트럼은 445 nm, 484 nm 및 450 nm 부근에서 각각 관찰되었다. 본 연구에 있어서 합성된 DPAVBi, AVBi 및 DPVBi는 알데히드, 케톤의 카르보닐기의 ${\alpha}$-위치의 안정성에 따라서 다른 반응특성을 나타냈다.

Keywords

Acknowledgement

Supported by : 단국대학교

References

  1. C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987) https://doi.org/10.1063/1.98799
  2. W. Helfrich and W. G. Schneider, Phy. Rev. Lett., 14, 229 (1965) https://doi.org/10.1103/PhysRevLett.14.229
  3. C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, JPN, J. Appl. Phys., 27, L713 (1988) https://doi.org/10.1143/JJAP.27.L713
  4. J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Bumm, and A. B. Holmes, Nature, 374, 539 (1990)
  5. J. Kido, H. Hayase, K. Hongawa, K. Nagai, and K. Okuyama, Appl. Phys. Lett., 65, 212 (1994)
  6. D. U. Kim and T. Tsutsui, J. Appl. Phys., 80, 4785 (1996) https://doi.org/10.1063/1.363420
  7. Z. Yang, J. Sokolik and F. E. Karatz, Macromolecules, 26, 1188 (1993) https://doi.org/10.1021/ma00057a047
  8. X. B. Ding, Synthetic Matals, 142, 267 (2004) https://doi.org/10.1016/j.synthmet.2003.09.010
  9. C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610 (1989) https://doi.org/10.1063/1.343409
  10. S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, Y. Hamada, and T. Wakimoto, Proc. SPIE, 1910, 212 (1993)
  11. S. Tokito, T. Tsutsui, and Y. Taga, J. Appl. Phys., 86. 2407 (1999) https://doi.org/10.1063/1.371068
  12. Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, and T. Usuki, Appl. Phys. Lett., 75, 1682 (1999) https://doi.org/10.1063/1.124790
  13. C. Adachi, T. Tsutsui, and S. Saito, Appl. Phys. Lett., 55, 1489 (1989) https://doi.org/10.1063/1.101586
  14. J. Kido, C. Ohtaki, K. Hongawa, K. Okuyama, and K. Nagai, JPN J. Appl. Phys., 32, L917 (1993) https://doi.org/10.1143/JJAP.32.L917
  15. M. Carrard, S. G. Conto, L. S. Ahmed, D. Ades, and A. Siove, Thin Solid Films, 352, 189 (1999) https://doi.org/10.1016/S0040-6090(99)00322-3
  16. K. Yoshino, P. Love, M. Onoda, and R. Sugimoto, JPN J. Appl. Phys., 27, L2388 (1998)
  17. S. Hayashi, H. Etoh, and S. Saito, JPN J. Appl. Phys., 25, L773 (1986) https://doi.org/10.1143/JJAP.25.L773