DOI QR코드

DOI QR Code

Present Scenario and Future Prospects of Phytase in Aquafeed - Review -

  • Debnath, Dipesh (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education) ;
  • Sahu, N.P. (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education) ;
  • Pal, A.K. (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education) ;
  • Baruah, Kartik (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education) ;
  • Yengkokpam, Sona (Department of Fish Nutrition and Biochemistry, Central Institute of Fisheries Education) ;
  • Mukherjee, S.C. (Department of Fish Pathology and Microbiology, Central Institute of Fisheries Education)
  • Received : 2005.04.11
  • Accepted : 2005.07.27
  • Published : 2005.12.01

Abstract

Aquaculture pollution is a major concern among the entrepreneurs, farmers and researchers. Excess discharge of phosphorus and nitrogen into the water bodies is the principal pollutant responsible for this. Plant-based feed ingredients due to its high phytic acid content enhances both nitrogen and phosphorus discharge thereby increasing the pollution level. Dietary phytase treatment is probably the best answer to address this problem. This review explains the nature and properties of phytate, its interactions with other nutrients and the application of phytase in aquafeed to reduce the pollution. This review also covers the different biotechnological aspects for lowering the phytic acid level in the common aquafeed ingredients, as an alternate approach to controlling the pollution level. Some of future research needs have also been highlighted to attract the attention of more researchers to this area.

Keywords

References

  1. Adeola, O. 1995. Digestive utilization of minerals by weanling pigs fed copper and phytase supplemented diets. Can. J. Anim. Sci. 75:603-610.
  2. Adeola, O. and J. S. Sands. 2003. Does supplemental dietary microbial phytase improve amino acid utilization? A perspective that it does not. J. Anim. Sci. 81:E78-E85.
  3. Adeola, O., B. V. Lawrence, A. L Sutten and T. R. Cline. 1995. Phytase-induced changes in mineral utilization in zincsupplemented diets for pigs. J. Anim. Sci. 73:3384-3391.
  4. Alvi, A. S. 1994. Adventitious toxins in plan origin feedstuffs: Quantification and tolerance level in fish. Masters dissertation, Aligarh Muslim University, Aligarh, India.
  5. Anderson, P. A. 1985. Digestibility and amino acid availability in cereals and oilseeds, American Association of Cereal Chemists, St. Paul, MN.
  6. Baldi, B. G., J. J. Scott, J. D. Everard and F. A. Loewus. 1988. Localisation of constitutive phytases in lily pollen and properties of the pH 8 form. Plant Sci. 12:180-185.
  7. Bali, A. and T. Satyanarayana. 2001. Microbial phytases in nutrition and combating phosphorus pollution. Everyman’s Sci. 4:207-209.
  8. Baruah, K. 2004. Effect of dietary microbial phytase and acidifier on the bioavailability of nutrients in the diet of Labeo rohita fingerlings. M. F. Sc. Dissertation, Central Institute of Fisheries Education, Mumbai, India.
  9. Baruah, K., N. P. Sahu, A. K. Pal and D. Debnath. 2004. Dietary Phytase: An ideal approach for a cost effective and lowpolluting aquafeed. NAGA. 27 (3 and 4):15-19.
  10. Bedford, M. R. and H. Schulze. 1998. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 11:91-114.
  11. Bitar, K. and J. G. Reinhold. 1971. Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf and man. Biochem. Biophys, Acta. 314:227-233.
  12. Brune, M., H. L. Rossander, L. Hallberg, A. Gleerup and A. S. Sandberg. 1992. Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J. Nutr. 122:442-449 https://doi.org/10.1093/jn/122.3.442
  13. Cain, K. D. and D. L. Garling. 1995. Pretreatment of soybean meal with phytase for salmonid diets to reduce phosphorus concentrations in hatchery effluents. Prog. Fish Cult. 57:114-119.
  14. Cheng, Z. J. and R. W. Hardy. 2002. Effect of microbial phytase on apparent nutrient digestibility of barley, canola meal, wheat and wheat middlings, measured in vivo using rainbow trout (Oncorhynchus mykiss). Aqua. Nutr. 8:271-277.
  15. Cheryan, M. 1980. Phytic acid interactions in food systems. CRC Crit. Rev. Food Sci. Nutr. 13:297-335.
  16. Cooper, J. R. and H. S. Gowing. 1983. Mammalian small intestine phytase (EC 3.1.3.8). Br. J. Nutr. 50:673-678.
  17. Cosgrove, D. J. 1966. The chemistry and biochemistry of inositol polyphosphates. Rev. Pure Appl. Chem. 16:297-335.
  18. Cromwell, G. L., R. D. Coffey, H. J. Monegue and J. H. Randolph. 1995. Efficacy of low-activity, microbial phytase in improving the bioavailability of phosphorus in corn-soyabean meal diets for pigs. J. Anim. Sci. 73:449-456 https://doi.org/10.2527/1995.732449x
  19. De Silva S. S. and T. A. Anderson. 1995. Fish nutrition in aquaculture. Chapman and Hall Aquaculture Series 1, Chapman and Hall, London, UK.
  20. Debnath, D., A. K. Pal, N. P. Sahu, K. K. Jain, S. Yengkokpam and S. C. Mukherjee. 2005a. Effect of dietary microbial phytase supplementation on growth and nutrient digestibility of Pangasius pangasius (Hamilton) fingerlings. Aqua. Res. 36:180-187.
  21. Debnath, D., N. P. Sahu, A. K. Pal, K. K. Jain, S. Yengkokpam and S. C. Mukherjee. 2005b. Mineral status of Pangasius pangasius (Hamilton) fingerlings in relation to supplemental phytase: absorption, whole body and bone mineral content. Aqua. Res. 36:326-335.
  22. Dvorakova, J., O. Volfova and J. Kopeck. 1997. Characterization of phytase produces by Aspergillus niger. Folia Microbiol. 42:349-352.
  23. Eeckhout, W. and M. dePaepe. 1994. Total phosphorus, phytate phosphorus and phytase activity in plant feedstuffs. Anim. Feed Sci. Technol. 47:19-29.
  24. Forster, I., D. A. Higgs, B. S. Dosanjh, M. Rowshandeli and J. Parr. 1999. Potential for dietary phytase to improve the nutritive value of canola protein concentrate and decrease phosphorus output in rainbow trout (Oncorhynchus mykiss) held in 11$^{\circ}C$ fresh water. Aquacult. 179:109-125.
  25. Gatlin, D. M. and R. P. Wilson. 1984. Zinc supplementation of practical channel catfish diets. Aquacult. 41:31-36.
  26. Goel, M. and C. B. Sharma. 1979. Multiple forms of phytase in germinating cotyledons of Cucurbita maxima. Phytochem. 18:1939-1942.
  27. Golovan, S. P., M. A. Hayes, J. P. Phillips and C. W. Forsberg. 2001. Transgenic mice expressing bacterial phytase as a model for phosphorus pollution control. Nature Biotech. 19:429-433.
  28. Greiner, R., E. Haller, U. Konietzny and K. D. Jany. 1997. Purification and characterization of phytase from Klebsiella terrigena. Arch. Biochem. Biophys. 341:201-206.
  29. Greiner, R., K. D. Jany and A. M. Larsson. 2000. Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (phytases) from barley (Hordeum vulgare). J. Cereal Sci. 31:127-139.
  30. Greiner, R., U. Konietzny and K. D. Jany. 1993. Purification and characterization of two phytases from Escherichia coli. Arch. Biochem. Biophys. 303:107-113.
  31. Halver, J. E. 1989. The vitamins. In: Fish nutrition. (Ed. J. E. Halver). Academic Press, Inc., San Diego, USA, pp. 31-109.
  32. Hamada, J. S. 1996. Isolation and identification of the multiple forms of soybean phytases. J. Am. Oil Chemists’ Soc. 73:1143-1151. https://doi.org/10.1007/BF02523376
  33. Hamada, L. S. 1994. Use of polyethylene glycol and high performance chromatography for preparative seperation of Aspergilus ficuum acid phosphatases. J. Chromato. 658:371-380. https://doi.org/10.1016/0021-9673(94)80027-8
  34. Han, Y. M., K. R. Roneker, W. G. Pond and X. G. Lei. 1998. Adding wheat middlings, microbial phytase and citric acid to corn-soybean meal diets for growing pigs may replace inorganic phosphorus supplementation. J. Anim. Sci. 76:2649-2653.
  35. Hardy, R. W. 1998. Phytate. Aqua. Mag. 11/12:77-80.
  36. Harland, F. B. and E. R. Morris. 1995. Phytin: A good or a bad food component. Nutr. Res. 15:733-754.
  37. Hayakawa, T., Y. Toma and I. Igaue. 1989. Purification and characterization of acid phosphatases with or without phytase activity from rice bran. Agric. Biol. Chem. 53:1475-1483.
  38. Heindl, U. 2002. Phytase: How does the enzyme work in fish nutrition? Asian Aqua. Mag. 3/4:22-24.
  39. Hidvegi, M. and R. Lasztity. 2002. Phytic acid content of cereals and legumes and interaction with proteins. Periodica Polytechnica Ser. Chem. Eng. 46:59-64.
  40. Hong, J. W., I. H. Kim, O. S. Kwon, S. H. Lee, H. D. Bae, S. J. Kang and U. M. Yang. 2001. Effects of phytezyme supplementation on the growth performance and nutrient digestibility in growing pigs. Asian-Aust. J. Anim. Sci. 14:1440-1443.
  41. Hossain, M. A. and K. Jauncey. 1990. Detoxification of linseed and sesame meal and evaluation of their nutritive value in the diet of carp (Cyprinus carpio L.). Asian Fish. Sci. 3:169-183.
  42. Hossain, M. A. and K. Jauncey. 1991. The effects of varying dietary phytic acid, calcium and magnesium levels on the nutrition of common carp, Cyprinus carpio. In: Fish Nutrition in Practice. Proc. 4th Int. Symp. Fish Nutrition and Feeding, Biarritz, France. (Ed. S. J. Kaushik and P. Luquet). pp. 705-715.
  43. Houde, R. l., I. Alli and S. Kermasha. 1990. Purification and characterization of canola seed (Brassica sp.) phytase. J. Food Biochem. 114:331-351.
  44. Hughes, K. P. and J. H. Soares, Jr. 1998. Efficacy of phytase on phosphorus utilization in practical diets fed to striped bass, Morone saxatilis. Aqua. Nutr. 4:133-140.
  45. Iqbal, T. H., K. O. Lewis and B. T. Cooper. 1994. Phytase activity in the human and rat small intestine. Gut. 35:1233-1236.
  46. Jackson, L. S., M. H. Li and E. H. Robinson. 1996. Use of microbial phytase in channel catfish Ictalurus punctatus diets to improve utilization of phytate phosphorus. J. World Aqua. Soc. 27:309-313.
  47. Jacob, J. P., S. Ibrahim, R. Blair, H. Namkung and I. K. Paik. 2000. Using enzyme supplemented, reduced protein diets to decrease nitrogen and phosphorus excretion of white leghorn hens. Asian-Aust. J. Anim. Sci. 13:1743-1749.
  48. Johnson, L. F. and M. E. Tate. 1969. Structure of phytic acid. Can. J. Chem. 47:63-73.
  49. Jongbloed, A. W. 1987. Phosphorus in the feeding of pigs. Effects of diet on absorption and retention of phosphorus by growing pigs. Ph. D. Thesis, Lelystad, The Netherlands.
  50. Jongbloed, A. W., A. Kemme and A. Mroz. 1996. The effect of organic acids in diets for growing pigs on the efficacy of microbial phytase. In: Phytase in Animal Nutrition and Waste Management. (Ed. M. B. Coelho and E. T. Kornegay). BASF Corporation, Mount Olive, NJ, p. 515
  51. Jongbloed, A. W., L. deJonge, P. A. Kemme, Z. Mroz and A. K. Kies. 1997. Proc. Sixth BASF Forum on Animal Nutrition, Ludwigshafen, Germany.
  52. Kim, B. G., J. Z. Tian, J. S. Lim, D. Y. Kil, H. Y. Jeon, Y. K. Chung and Y. Y. Kim. 2004. Influences of enzyme supplementation on growth, ileal and apparent fecal digestibility and morphology of small intestine in pigs. Asian-Aust. J. Anim. Sci. 17:1729-1735.
  53. Konietzny, U., R. Greiner and K. D. Jany. 1995. Purification and characterization of phytase from spelt. J. Food Biochem. 118:165-183.
  54. Kornegay, E. T. 1995. Important considerations for using microbial phytase in broiler and turkey diets. In: Proceedings of Second Symposium on Feed Enzymes (ESFE2). (Ed. W. van Hartingsveldt, M. Hessing, J. P. van der Lugt and W. A. C. Somers). Noordwijkerhout, Netherlands, TNO Nutrition and Food Research Institute, Zeist, pp. 189-197.
  55. Lall, S. P. 1991. Digestibility, metabolism and excretion of dietary phosphorus. In: Nutritional Strategies and Aquaculture Waste. Proc. 1st Int. Symo. Nutritional Strategies in Management of Aquaculture Waste. (Ed. C. B. Cowey and C. Y. Cho). Guelph, Ontario, pp. 77-90.
  56. Lanari, D., E. D. Agaro and C. Turri. 1998. Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquacult. 161:345-356.
  57. Lantsch, H. J., S. Hillenbrand, S. E. Scheuermann and K. H. Menke. 1992. Comparative study of phosphorus utilization from wheat, barley, corn diets by young rats and pigs. J. Anim. Physiol. Anim. Nutr. 67:123-132.
  58. Lei, X., K. K. Pao, E. R. Miller, D. E. Ullrey and M. T. Yokoyama. 1993. Supplemental microbial phytase improves bioavailability of dietary zinc to weaning pigs. J. Nutr. 123:1117-1123.
  59. Lenis, N. P. and A. W. Jongbloed. 1999. New technologies in low pollution swine diets: Diet manipulation and use of synthetic amino acids, phytase and phase feeding for reduction of nitrogen and phosphorus excretion and ammonia emission-Review. Asian-Aust. J. Anim. Sci. 12:305-327.
  60. Li, J., C. E. Hegeman, R. W. Hanlon, G. H. Lacy, D. M. Denbow and E. A. Grabau. 1997. Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiol. 114:1-9 https://doi.org/10.1104/pp.114.3.1103
  61. Li, M. H. and E. H. Robinson. 1997. Microbial phytase can replace inorganic phosphorus supplements in channel catfish Ictalurus punctatus diets. J. World Aqua. Soc. 28:402-406.
  62. Lonnerdal, B., A. S. Sandberg, B. Sandstrom and C. Kunz. 1989. Inhibitory effects of phytic acid and other inositol phosphates on zinc and calcium absorption in suckling rats. J. Nutr. 119:211-221.
  63. Lopez, H. W., F. Leenhardt, C. Coudray and C. Remesy. 2002. Minerals and phytic acid interactions: is it a real problem for human nutrition? Int. J. Food Sci. Technol. 37:727-739.
  64. Maugenest, S., I. Martinez, B. Godin, P. Perez and A. M. Lescure. 1999. Structure o two maize phytate genes and their spatio temporal-expressionduring seedling development. Plant Mol. Biol. 39:502-514.
  65. Mitchell, D. B., K. Vogel, B. J. Wenmann, L. Pasamontes and A. P. G. M. van Loon. 1997. The phytase subfamily of histidine and acid phosphatases isolation: isolation of gene for two novel phytases from fungi Aspergilus terreus and Myeeliophthora thermophila. Microbiol. 143:245-252.
  66. Mohanna, C. and Y. Nys. 1999. Changes in zinc and manganese availability in broiler chicks induced by vegetal and microbial phytases. Anim. Feed Sci. Technol. 77:241-253.
  67. Moore, E., V. R. Helly, O. M. Coneely, P. P. Ward, R. F. Power and D. R. Headon. 1995. Molecular cloning expression and evaluation of phosphohydrolases for phytate degrading activity. J. Indus. Microbiol. 114:396-402.
  68. Mullaney, E. J., C. B. Daly and A. H. J. Ullah. 2000. Advances in phytase research. Adv. Appl. Microbiol. 47:157-199.
  69. Nakano, T., T. Joh, E. Tokumoto and T. Hayakawa. 1999. Purification and characterization of phytase from bran of Triticum aestivum L cv Nourin 61. Food Sci. Technol. Res. 5:18-23.
  70. Nayini, N. R. and P. Markakis. 1986. Phytase. In: Phytic acid: Chemistry and applications. (Ed. E. Graf). Pilatus Press, Minneapolis, Minnesota, pp. 101-118.
  71. Nelson, T. S. 1967. The utilization of phytate phosphorus by poultry. Poult. Sci. 46:862-871. https://doi.org/10.3382/ps.0460862
  72. NRC (National Research Council). 1993. Nutrient Requirements of Fish. National Academy Press, Washington, DC, USA.
  73. Oliva-Teles, A., J. P. Pereira, A. Gouveia and E. Gomes. 1998. Utilization of diets supplemented with microbial phytase by seabass (Dicentrarchus labrax) juveniles. Aquat. Living Resour. 11:255-259.
  74. Omogbenigun, F. O., C. M. Nyachoti and B. A. Slominski. 2003. The effect of supplementing microbial phytase and organic acids to a corn-soybean based diet fed to early-weaned pigs. J. Anim. Sci. 81:1806-1813.
  75. Paik, I. K. 2001. Management of excretion of phosphorus, nitrogen and pharmacological level minerals to reduce environmental pollution from animal production-review. Asian-Aust. J. Anim. Sci. 14:384-394. https://doi.org/10.5713/ajas.2001.384
  76. Paik, I. K. 2003. Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultry production. Asian-Aust. J. Anim. Sci. 16:124-135. https://doi.org/10.5713/ajas.2003.124
  77. Paik, I. K., J. S. Um, S. J. Lee and J. G. Lee. 2000. Evaluation of the efficacy of crude phytase prerarations in broiler chickens. Asian-Aust. J. Anim. Sci. 13:673-680.
  78. Pallauf, J. and G. Rimbach. 1997. Nutritional significance of phytic acid and phytase. Arch. Anim. Nutr. 50:301-319.
  79. Pallauf, J., D. Hohler and G. Rimbach. 1992. Effect of microbial phytase supplementation to a maize-soya diet on the apparent absorption of Mg, Fe, Cu, Mn and Zn and parameters of Zn status in piglets. J. Anim. Physiol. Anim. Nutr. 68:1-9.
  80. Papatryphon, E. and J. H. Soares, Jr. 2001. The effect of phytase on apparent digestibility of four practical plant feedstuffs fed to striped bass, Morone saxatilis. Aqua. Nutr. 7:161-167.
  81. Papatryphon, E., R. A. Howell and J. H. Soares, Jr. 1999. Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase. J. World Aqua. Soc. 30:161-173.
  82. Pasamontes, L., M. Haiker, M. Wyss, M. Tessier and A. P. G. M. van Loon. 1997. Gene cloning, purification and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63:1696-1700.
  83. Peng, Y. L., Y. M. Guo and J. M. Yuan. 2003. Effects of microbial phytase replacing partial inorganic phosphorus supplementation and xylanase on the growth performance and nutrient digestibility in broilers fed wheat-based diets. Asian-Aust. J. Anim. Sci. 16:239-247.
  84. Pointillart, A., A. Fourdin and N. Fontaine. 1987. Importance of cereal phytase activity for phytate phosphorus utilization by growing pigs fed diets containing triticale or corn. J. Nutr. 29:907-912.
  85. Powell, K. 2003. Eat your veg. Nature. 24 Nov.:378-379.
  86. Raboy, V. 1997. Accumulation and storage of phosphate and minerals. In: Cellular and molecular biology of plant seed development. (Ed. B. A. Larkins and I. K. Vasil). Kluwer Academic publishers, Dordrecht, The Netherlands, pp. 441-477.
  87. Ravindran, V. and E. T. Kornegay. 1993. Acidification of weaner pig diet: a review. J. Sci. Food Agric. 62:313-322.
  88. Ravindran, V., W. L. Bryden and E. T. Kornegay. 1995. Phytates: occurrence, bioavailability and implications in poultry nutrition. Poult. Avian Biol. Rev. 6:125-143.
  89. Reddy, N. R., S. K. Sathe and D. K. Saunkhe. 1982. Phytases in legumes and cereals. Adv. Food Res. 28:1-92.
  90. Richardson, N. L., D. A. Higgs, R. M. Beames and J. R. McBride. 1985. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth, and histolopathology in juvenile Chinook salmon (Oncorhynchus tshawytscha). J. Nutr. 115:553-567.
  91. Riche, M. and P. B. Brown. 1996. Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquacult. 142:269-282.
  92. Robinson, E. H., L. S. Jackson and M. H. Li. 1996. Supplemental phosphorus in practical channel catfish diets. J. World Aqua. Soc. 27:303-308.
  93. Robinson, E. H., M. H. Li and B. B. Manning. 2002. Comparison of microbial phytase and dicalcium phosphate for growth and bone mineralization of pond-raised channel catfish, Ictalurus punctatus. J. Appl. Aqua. 12:81-88.
  94. Rodehutscord, M. 1995. Phytase and carbohydrates in diets for rainbow trout? In: Sec. Eur. Symp. On Feed Enzymes. (Ed. W. van Hartingsveldt, M. Hessing, J. P. van der Lugt and W. A. C. Somers). TNO Nutrition and Food Research Inst., Zeist, The Netherlands. pp. 229-235.
  95. Rodehutscord, M. and E. Pfeffer. 1995. Effects of supplemental microbial phytase on phosphorus digestibility and utilization in rainbow trout (Oncorhynchus mykiss). Water Sci. Technol. 31:143-147.
  96. Rodriguez, E., E. J. Mullaney and X. G. Lei. 2000. Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochem. Biophys. Res. Comm. 268:373-378.
  97. Sandberg, A. S., M. Brune, N. G. Carlsson, L. Hallberg, E. Skoglund and H. L. Rossander. 1999. Inositol phosphates with different number of phosphate groups influence iron absorption in humans. Am. J. Clin. Nutr. 70:240-246.
  98. Sandstrom, B. and A. S. Sandberg. 1992. Inhibitory effects of isolated inositol phosphates on zinc absorption in humans. J. Trace Ele. Electro. Health Dis. 6:99-103.
  99. Sasakawa, N., M. Sharif and M. R. Hanley. 1995. Metabolism and biological activities of inositol pentakisphosphate and inositol hexakisphosphate. Biochem. Pharmacol. 50:137-146.
  100. Satoh, S., W. E. Poe and R. P. Wilson. 1989. Effect of supplemental phytate and/ or tricalcium phosphate on weight gain, feed efficiency and zinc content in vertebrae of channel catfish. Aquacult. 80:155-161.
  101. Schafer, A., W. M. Koppe, K. H. Meyer-Burgdorff and K. D. Gunther. 1995. Effects of microbial phytase on the utilization of native phosphorus by carp in a diet based on soybean meal. Water Sci. Technol. 31:149-155.
  102. Selle, P. H., V. Ravindran, P. H. Pittolo and W. L. Bryden. 2003a. Effects of phytase supplementation of diets with two tiers of nutrient specifications on growth performance and protein efficiency ratios of broiler chickens. Asian-Aust. J. Anim. Sci. 16:1158-1164.
  103. Selle, P. H., V. Ravindran, G. Ravindran, P. H. Pittolo and W. L. Bryden. 2003b. Influence of phytase and xylanase supplementation on growth performance and nutrient utilization of broilers offered wheat-based diets. Asian-Aust. J. Anim. Sci. 16:394-402.
  104. Shim, Y. H., B. J. Chae and J. H. Lee. 2003. Effects of phytase and carbohydrases supplementation to diet with a partial replacement of soybean meal with rapeseed meal and cottonseed meal on growth performance and nutrient digestibility of growing pigs. Asian-Aust. J. Anim. Sci. 16:1339-1347.
  105. Shim, Y. H., B. J. Chae and J. H. Lee. 2004. Effects of phytase and enzyme complex supplementation to diets with different nutrient levels on growth performance and ileal nutrient digestibility of weaned pigs. Asian-Aust. J. Anim. Sci. 17:523-532.
  106. Simons, P. C. M., H. A. J. Versteegh, A. W. Jongbloed, P. A. Kemme, P. Slump, K. D. Bos, W. G. E. Wolters, R. F. Beudeker and G. J. Verschoor. 1990. Improvement of phosphorus availability by microbial phytase in broilers and pigs. Br. J. Nutr. 64:525-540.
  107. Singh, M. and A. D. Krikorian. 1982. Inhibition of trypsin activity in vitro by phytate. J. Agric. Food Chem. 30:799-800.
  108. Singh, P. K., V. K. Khatta, R. S. Thakur, S. Dey and M. K. Sangwan. 2003. Effects of phytase supplementation on the performance of broiler chickens fed maize and wheat based diets with different levels of non-phytate phosphorus. Asian-Aust. J. Anim. Sci. 16:1642-1649.
  109. Spinelli, J., C. R. Houle and J. C. Wekell. 1983. The effects of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquacult. 30:71-83.
  110. Stahl, C. H., Y. M. Han, K. R. Roneker, W. A. House and X. G. Lei. 1999. Phytase improves iron bioavailability for haemoblobin synthesis in young pigs. J. Anim. Sci. 77:2135-2142.
  111. Storebakken, T., K. D. Shearer and A. J. Roem. 1998. Availability of protein, phosphorus and other elements in fish meal, soyprotein concentrate and phytase-treated soy-proteinconcentrate-based diets to Atlantic salmon, Salmo salar. Aquacult. 161:365-379.
  112. Sugiura, S. H., J. Gabaudan, F. M. Dong and R. W. Hardy. 2001. Dietary microbial phytase supplementation and the utilization of phosphorus, trace minerals and protein by rainbow trout (Oncorhynchus mykiss Walbaum) fed soybean meal-based diets. Aqua. Res. 32:583-592 https://doi.org/10.1046/j.1365-2109.2001.00581.x
  113. Tacon, A. G. J. 1990. The essential nutrients. In: Standard methods for the nutrition and feeding of farmed fish and shrimp. Vol. 1. (Ed. A. G. J. Tacon). Argent Laboratories Press, Washington, pp. 70-84.
  114. Taiz, L. and E. Zeiger. 1998. Plant defenses: Surface protectants and secondary metabolites. In: Plant Physiology. (Ed. L. Taiz and E. Zaiger). Sinauer Associates Inc., Massachusetts, pp. 347-377.
  115. Teskeredzic, Z., D. A. Higgs, B. S. Dosanjh, J. R. McBride, R. W. Hardy, R. M. Beames, M. Simell, T. Vaara and R. B. Bridges. 1995. Assessment of unphytinized and dephytinized rapeseed protein concentrate as sources of dietary protein for juvenile rainbow trout (Oncorhynchus mykiss). Aquacult. 131:261-277.
  116. Thiel, U., P. P. Hoppe, F. J. Schoner and E. Yeigan. 1993. Influence of microbial phytase supplementation on the retention of Zn, P and Ca in broiler chicks. Proc. Soc. Nutr. Physiol. 47:20.
  117. Thompson, L. U. 1986. Phytic acid: a factor influencing starch digestibility and blood glucose response. In: Phytic Acid: chemistry and applications. (Ed. E. Graf). Pilatus Press, Minneapolis, pp. 173.
  118. Tyagi, P. K. and S. V. S. Verma. 1998. Phytate phosphorus content of some common poultry feedstuffs. Ind. J. Poult. Sci. 33:86-88.
  119. Ullah, A. H. J. and D. M. Gibson. 1987. Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRI. 3135: purification and characterization. Prep. Biochem. 17:63-91.
  120. Um, J. S., H. S. Lim, S. H. Ahn and I. K. Paik. 2000. Effects of microbial phytase supplementation to low phosphorus diets on the performance and utilization of nutrients in broiler chickens. Asian-Aust. J. Anim. Sci. 13:824-829.
  121. Usmani, N. and A. K. Jafri. 2002. Influence of dietary phytic acid on the growth, conversion efficiency, and carcass composition of mrigal Cirrhinus mrigala (Hamilton) fry. J. World Aqua. Soc. 33:199-204. https://doi.org/10.1111/j.1749-7345.2002.tb00495.x
  122. Van Weerd, J. H., K. H. A. Khalaf, F. J. Aartsen and P. A. T. Tijssen. 1999. Balance trials with African catfish Clarias gariepinus fed phytase-treated soybean meal-based diets. Aqua. Nutr. 5:135-142.
  123. Vielma, J., S. P. Lall, J. Koskela, F. J. Schöner and P. Mattila. 1998. Effects of dietary phytase and cholecalciferol on phosphorus bioavailability in rainbow trout (Oncorhynchus mykiss). Aquacult. 163:309-323.
  124. Vielma, J., T. Mäkinen, P. Ekholm and J. Koskela. 2000. Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout (Oncorhynchus mykiss) and algal availability of phosphorus load. Aquacult. 183:349-362.
  125. Vohra, A. and T. Satyanarayan. 2003. Phytases: microbial sources, production, purification and potential biotechnological applications. Crit. Rev. Biotechnol. 23:29-60.
  126. Wise, A. 1980. Dietary factors determining the biological activities of phytate. Nutr. Abstr. Rev. 53:791-806.
  127. Wodzinski, R. J. and A. H. J. Ullah. 1996. Phytase. Adv. Appl. Microbiol. 42:263-302.
  128. Wyss, M., L. Pasamontes and A. Friedlein. 1999b. Biophysical Characterisation of fungal phytases (myo-inositol hexakisphosphate phosphohydrolase): Molecular size, Glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol. 65:359-366.
  129. Wyss, M., R. Brugger and A. Kronenberger. 1999a. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolase): catalytic properties. Appl. Environ. Microbiol. 65:367-373.
  130. Xavier, B. 2005. Effect of de-tannification and exogenous enzymes on growth and nutrient utilization of Labeo rohita fingerlings. M.F.Sc. Dissertation, Central Institute of Fisheries Education, Mumbai, India.
  131. Yamada, K., Y. Minoda and S. Yamamoto. 1968. Phytase from Aspergillus terreus. Part I. Production, purification and some general properties of the enzyme. Agric. Biol. Chem. 32:1275-1282.
  132. Yan, W., R. C. Reigh and Z. Xu. 2002. Effects of fungal phytase on utilization of dietary protein and minerals, and dephosphorylation of phytic acid in the alimentary tract of channel catfish Ictalurus punctarus fed an all-plant-protein diet. J. World Aqua. Soc. 33:10-22.
  133. Yi, Z., E. T. Kornegay and D. M. Denbow. 1996. Supplemental microbial phytase improves zinc utilization in broilers. Poult. Sci. 75:540-546.
  134. Yoon, J. H., L. U. Thompson and D. J. Jenkins. 1983. The effect of phytic acid on in vitro rate of starch digestibility and blood glucose response. Am. J. Clin. Nutr. 38:835-842 https://doi.org/10.1093/ajcn/38.6.835

Cited by

  1. Dietary Crude Protein, Citric Acid and Microbial Phytase Interacts to Influence the Hemato-Immunological Parameters of Rohu, Labeo Rohita, Juveniles vol.40, pp.6, 2009, https://doi.org/10.1111/j.1749-7345.2009.00304.x
  2. Effect of germination on the phytase activity, phytate and total phosphorus contents of rice (Oryza sativa), maize (Zea mays), millet (Panicum miliaceum), sorghum (Sorghum bicolor) and wheat (Triticum aestivum) vol.48, pp.6, 2011, https://doi.org/10.1007/s13197-010-0186-y
  3. Phytate and phytase in fish nutrition vol.96, pp.3, 2011, https://doi.org/10.1111/j.1439-0396.2011.01169.x
  4. Identification and determination of extracellular phytate-degrading activity in actinomycetes vol.28, pp.7, 2012, https://doi.org/10.1007/s11274-012-1069-3
  5. Water soaking and exogenous enzyme treatment of plant-based diets: effect on growth performance, whole-body composition, and digestive enzyme activities of rohu, Labeo rohita (Hamilton), fingerlings vol.38, pp.2, 2012, https://doi.org/10.1007/s10695-011-9511-2
  6. Mineral requirements of fish: a systematic review vol.8, pp.2, 2014, https://doi.org/10.1111/raq.12090
  7. Dietary microbial phytase exerts mixed effects on the gut health of tilapia: a possible reason for the null effect on growth promotion vol.115, pp.11, 2016, https://doi.org/10.1017/S0007114516001240
  8. Association of phytic acid content with biotic stress tolerance in mungbean (Vigna radiata L. Wilczek) vol.44, pp.2, 2016, https://doi.org/10.1007/s12600-016-0514-5
  9. Molecular advancements in the development of thermostable phytases vol.101, pp.7, 2017, https://doi.org/10.1007/s00253-017-8195-7
  10. vol.23, pp.5, 2017, https://doi.org/10.1111/anu.12481
  11. , and Reduce Nutrient Waste pp.08938849, 2018, https://doi.org/10.1111/jwas.12421
  12. Improved Apparent Digestibility Coefficient of Protein and Phosphorus by Supplementation of Microbial Phytase in Diets Containing Cottonseed and Soybean Meal for Juvenile Olive Flounder (Paralichthys vol.21, pp.9, 2008, https://doi.org/10.5713/ajas.2008.80053
  13. Effects of Dietary Supplementation of a Meju, Fermented Soybean Meal, and Aspergillus oryzae for Juvenile Parrot Fish (Oplegnathus fasciatus) vol.22, pp.6, 2005, https://doi.org/10.5713/ajas.2009.80648
  14. Changes in Nutritive Value and Digestion Kinetics of Canola Seed Due to Microwave Irradiation vol.23, pp.3, 2010, https://doi.org/10.5713/ajas.2010.80574
  15. Feed transit and apparent protein, phosphorus and energy digestibility of practical feed ingredients by Senegalese sole (Solea senegalensis) vol.302, pp.1, 2005, https://doi.org/10.1016/j.aquaculture.2010.02.013
  16. Dietary roles of phytate and phytase in human nutrition: A review vol.120, pp.4, 2005, https://doi.org/10.1016/j.foodchem.2009.11.052
  17. Quantitative trait loci mapping for feed conversion efficiency in crucian carp ( Carassius auratus ) vol.7, pp.None, 2005, https://doi.org/10.1038/s41598-017-17269-2
  18. A comparison of the effect of organic acids and dicalcium phosphate supplementation on phosphorus bioavailability, growth performance and digestive enzyme activities of Labeo rohita fingerlings vol.27, pp.1, 2021, https://doi.org/10.1111/anu.13179