초임계 유체 및 다공성 소재 제조 기술

Supercritical Fluids and Preparation of Porous Materials

  • 이준영 (연세대학교 연세나노과학기술연구단) ;
  • 안준현 (연세대학교 화학공학과 기능성초미립자공정연구실) ;
  • 김중현 (연세대학교 화학공학과 기능성초미립자공정연구실)
  • Lee, Jun-Young (Nanotechnology Research Center, Yonsei University) ;
  • An, Joon-Hyun (Nanosphere Process & Technology Laboratory, Department of Chemical Engineering, Yonsei University) ;
  • Kim, Jung-Hyun (Nanosphere Process & Technology Laboratory, Department of Chemical Engineering, Yonsei University)
  • 발행 : 2005.04.10

초록

다공성 소재는 바이오 및 전기전자소재 등 다양한 분야에 폭넓게 응용될 수 있다. 이러한 가공소재의 제조 및 공정은 주로 유기용매의 사용에 의해 이루어지고 있으나 유기용매는 대기 방출과 같은 많은 환경성 문제를 야기시키고 있다. 이에 반하여 초임계 유체는 기능성 기공 소재의 제조를 위한 대안 용매로서 수많은 물리적, 화학적 그리고 유독성 측면에서 유용한 장점을 보여주고 있다. 본 총설에서는 초임계 유체를 이용하여 나노/마크로 크기의 미세 기공구조 설계 및 형상 제어를 위한 공정 기술과 초임계 유체 내에서의 화학적 합성 반응을 통한 다공성 소재의 제조 기술을 소개하고자 한다.

Porous materials are useful in a wide range of applications including bio/electronic products. The preparation and processing of these materials are mainly progressed by using an organic solvent, which gives rise to air pollution by its emissions. Alternatively, supercritical fluids are well suited to the production of functional porous materials due to a number of specific physical, chemical, and toxicological advantages. In this review, we will introduce the preparation and processing techniques for the formation of the nano/macro pore structure and their morphology, which can be controled by using supercritical fluids.

키워드

과제정보

연구 과제 주관 기관 : 한국과학재단, 한국과학기술 정보연구원, 한국학술진흥재단

참고문헌

  1. J. M. Desimone, Science, 297, 799 (2002) https://doi.org/10.1126/science.1069622
  2. M. Poliakoff, J. M. Fitzpatrick, T. R. Farren, and P. T. Anastas, Science, 297, 807 (2002) https://doi.org/10.1126/science.297.5582.807
  3. E. J. Beckman, Environ. Sci. Tech., 36, 347A (2002) https://doi.org/10.1021/es022401f
  4. P. G. Jessop and W. Leitner, Chemical Synthesis Using Supercritical Fluids, Wiley-VCH, Weinheim, Germany (1999)
  5. M. A. McHugh and V. J. Krukonis, Supercritical Fluid Extraction, 2nd ed., Butterworth-Heinemann, Stoneham, MA (1994)
  6. M. J. Earle and K. R. Seddon, ACS Symposium Series, 819, 10 (2002)
  7. L. P. Barthel-Rosa and J. A. Gladysz, Coord. Chem. Rev., 192, 587 (1999) https://doi.org/10.1016/S0010-8545(99)00102-2
  8. E. de Wolf, G. van Koten, and B. J. Deelman, Chem. Soc. Rev., 28, 37 (1999) https://doi.org/10.1039/a805644g
  9. J. Y. Lee, K. I. Kim, and J. H. Kim, J. of Korean Ind. Eng. Chem., 13, 623 (2002)
  10. K. N. Lee, H. J. Lee, J. Y. Lee, Y. J. Suh, and J. H. Kim, ACS Symposium Series, 801(12), 152 (2002)
  11. K. N. Lee and J. H. Kim, Chemical industry and Technology, 16(4), 352 (1998)
  12. J. M. DeSimone, Z. Guan, and C. S. Elsbernd, Science, 257, 945 (1992) https://doi.org/10.1126/science.257.5072.945
  13. J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. DeSimone, Chem. Rev., 99, 543 (1999) https://doi.org/10.1021/cr9700336
  14. A. I. Cooper, J. Mater. Chem., 10, 207 (2000) https://doi.org/10.1039/a906486i
  15. P. G. Debenedetti, J. W. Tom, X. Kwauk, and S. D. Yeo, Fluid Phase Equilib., 82, 311 (1993) https://doi.org/10.1016/0378-3812(93)87155-T
  16. E. Reverchon, J. Supercrit. Fluids, 15, 1 (1999) https://doi.org/10.1016/S0896-8446(98)00129-6
  17. P. G. Shah, J. D. Holmes, R. C. Doty, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc., 122, 4245 (2000) https://doi.org/10.1021/ja9943748
  18. C. K. Ober, A. H. Gabor, P. Gallagher-Wetmore, and R. D. Allen, Adv. Mater., 9, 1039 (1997) https://doi.org/10.1002/adma.19970091309
  19. S. G. Kazarian, Macromol. Symp., 184, 215 (2002)
  20. S. Yesodharan, Curr. Sci., 82, 1112 (2002)
  21. J. Abeln, M. Kluth, G. Petrich, and H. Schmieder, High Press. Res., 20, 537 (2001) https://doi.org/10.1080/08957950108206202
  22. C. F. Kirby, and M. A. Mcllugh, Chem. Rev., 99, 565 (1999) https://doi.org/10.1021/cr970046j
  23. H. Matsuyama, H. Yano, T. Maid, M. Teramoto, K. Mishima, and K. Matsuya, J. Membrane Sci., 194, 157 (2001) https://doi.org/10.1016/S0376-7388(01)00436-7
  24. H. Matsuyama, A. Yamamoto, H. Yano, T. Maki, M. Teramoto, K. Mishima, and K. Matsuyama, J. Membrane Sci., 204, 81 (2002) https://doi.org/10.1016/S0376-7388(02)00018-2
  25. J. W. Tom and P. G. Debenedetti, J. Aerosol Sci., 22, 555 (1991) https://doi.org/10.1016/0021-8502(91)90013-8
  26. Y. Chemyak, F. Henon, R. B. Harris, R. D. Gould, R. K. Franklin, J. R. Edwards, J. M. DeSimone, and R. G. Carbonell, Ind. Eng. Chem. Res., 40, 6118 (2001) https://doi.org/10.1021/ie010267m
  27. A. Blasig, C. M. Shi, R. M. Enick, and M. C. Thies, Ind. Eng. Chem. Res., 41, 4976 (2002) https://doi.org/10.1021/ie0201819
  28. J. L. Owens, K. S. Anseth, and J. W. Randolph, Macromolecules, 35, 4289 (2002) https://doi.org/10.1021/ma011955k
  29. R. Y. Hsu, C. S. Tan, and J. M. Chen, J. Appl. Polym. Sci., 84, 1657 (2002) https://doi.org/10.1002/app.10543
  30. D. J. Dixon, G. Luna-Burcenas, and K. P. Johnston, Polymer, 35, 3998 (1994) https://doi.org/10.1016/0032-3861(94)90286-0
  31. B. Warwick, F. Dehghani, N. R. Foster, J. R. Biffin, and H. L. Regtop, Ind. Eng. Chem. Res., 41, 1993 (2002) https://doi.org/10.1021/ie010760y
  32. K. N. Lee, H. J. Lee, and J. H. Kim, Polymer International, 49(7), 712 (2000) https://doi.org/10.1002/1097-0126(200007)49:7<712::AID-PI439>3.0.CO;2-W
  33. K. N. Lee, Y. J. Suh, H. J. Lee, and J. H. Kim, Polymer(Korea), 23(2), 181 (1999)
  34. B. Krause, G. H. Koops, N. F. A. van der Vegt, M. Wessling, M. Wubbenhorst, and J. van Turnhout, Adv. Mater., 14, 1041 (2002) https://doi.org/10.1002/1521-4095(20020805)14:15<1041::AID-ADMA1041>3.0.CO;2-A
  35. B. Krause, M. Kloth, N. F. A. van der Vegt, and M. Wessling, Ind. Eng Chem. Res., 41, 1195 (2002) https://doi.org/10.1021/ie010655o
  36. S. Siripurapu, Y. J. Gay, J. R. Royer, J. M. DeSimone, R. J. Spontak, and S. A. Khan, Polymer, 43, 5511 (2002) https://doi.org/10.1016/S0032-3861(02)00407-X
  37. R. Langer and J. P. Vacanti, Science, 260, 920 (1993) https://doi.org/10.1126/science.8493529
  38. M. J. Whitaker, R. A. Quirk, S. M. Howdle, and K. M. Shakesheff, J. Pharm. Pharmacol., 53, 1427 (2001) https://doi.org/10.1211/0022357011777963
  39. S. M. Howdle, M. S. Watson, M. J. Whitaker, V. K. Popov, M. C. Davies, F. S. Mandel, J. D. Wang, and K. M. Shakesheff, Chem. Commun., 109 (2001)
  40. X. B. Yang, H. I. Roach, N. M. P. Clarke, S. M. Howdle, R. A. Quirk, K. M. Shakesheff, and R. O. C. Oreffo, Bone, 29, 523 (2001) https://doi.org/10.1016/S8756-3282(01)00617-2
  41. X. Yang, R. S. Tare, K. A. Partridge, H. I. Roach, N. M. P. Clarke, S. M. Howdle, K. M. Shakesheff, and R. O. C. Oreffo, J. Bone Miner. Res., 18, 47 (2003) https://doi.org/10.1359/jbmr.2003.18.1.47
  42. D. D. Hile, M. L. Amirpour, A. Akgerman, and M. V. Pishko, J. Controlled Release, 66, 177 (2000) https://doi.org/10.1016/S0168-3659(99)00268-0
  43. W. S. Koegler, C. Patrick, M. J. Cima, and L. G. Griffith, J. Biomed. Mater. Res., 63, 567 (2002) https://doi.org/10.1002/jbm.10209
  44. D. D. Hile and M. V. Pishko, Macromol. Rapid Commun., 20, 511 (1999) https://doi.org/10.1002/(SICI)1521-3927(19991001)20:10<511::AID-MARC511>3.0.CO;2-Q
  45. H. H. Winter, G. Gappert, and H. Ito, Macromolecules, 35, 3325 (2002) https://doi.org/10.1021/ma0119225
  46. F. Rindfleisch, T. P. DiNoia, and M. A. McHugh, J. Phys. Chem., 100, 15581 (1996) https://doi.org/10.1021/jp9615823
  47. C. F. Kirby and M. A. McHugh, Chem. Rev., 99, 565 (1999) https://doi.org/10.1021/cr970046j
  48. P. D. Whaley, S. Kulkarni, P. Ehrlich, R. S. Stein, H. H. Winter, W. C. Conner, and G. Beaucage, J. Polym. Sci. B, Polym. Phys., 36, 617 (1998) https://doi.org/10.1002/(SICI)1099-0488(199803)36:4<617::AID-POLB8>3.0.CO;2-L
  49. D. J. Abdallah and R. G. Weiss, Adv. Mater., 12, 1237 (2000) https://doi.org/10.1002/1521-4095(200009)12:17<1237::AID-ADMA1237>3.0.CO;2-B
  50. N. Husing and U. Schubert, Angew. Chem. Int. Ed., 37, 23 (1998)
  51. D. A. Loy, E. M. Russick, S. A. Yamanaka, B. M. Baugher, and K. J. Shea, Chem. Mater., 9, 2264 (1997) https://doi.org/10.1021/cm970326f
  52. C. Shi, Z. Huang, S. Kilic, J. Xu, R. M. Enick, E. J. Beckman, A. J. Carr, and R. E. Melendez, A. D. Hamilton, Science, 286, 1540 (1999) https://doi.org/10.1126/science.286.5444.1540
  53. Z. H. Huang, C. M. Shi, R. Enick, and E. Beckman, Chem. Mater., 14, 4273 (2002) https://doi.org/10.1021/cm020303n
  54. F. Placin, J. P. Desvergne, and F. Cansell, J. Mater. Chem., 10, 2147 (2000) https://doi.org/10.1039/b001714k
  55. J. vonBehren, E. H. Chimowitz, and P. M. Fauchet, Adv. Mater., 9, 921 (1997) https://doi.org/10.1002/adma.19970091116
  56. J. Y. Lee and J. H. Kim, Chemistry Letters, 33, 5, 526 (2004) https://doi.org/10.1246/cl.2004.526
  57. J. Y. Lee, K. N. Lee, H. J. Lee, and J. H. Kim, J. Industry Engineering Chemistry, 8, 546 (2002)
  58. J. Y. Lee, C. H. Song, J. I. Kim, and J. H. Kim, J. Nanoparticle Research, 2, 53 (2002)
  59. K. I. Kim, J. H. An, J. Y. Lee, and J. H. Kim, Polymeric Materials: Science & Engineering, 89, 320 (2003)
  60. K. I. Kim, J. H. An, J. Y. Lee, and J. H. Kim, Applied Chemistry, 7, 69 (2003)
  61. A. I. Cooper and A. B. Holmes, Adv. Mater., 11, 1270 (1999) https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1270::AID-ADMA1270>3.0.CO;2-E
  62. A. I. Cooper, C. D. Wood, and A. B. Holmes, Ind. Eng. Chem. Res., 39, 4741 (2000) https://doi.org/10.1021/ie000159k
  63. F. Svec and J. M. J. Frechet, Science, 273, 205 (1996) https://doi.org/10.1126/science.273.5272.205
  64. F. Svec and J. M. J. Frechet, Ind. Eng. Chem. Res., 38, 34 (1998) https://doi.org/10.1021/ie970598s
  65. C. Yu, M. C. Xu, F. Svec, and J. M. J. Frechet, J. Polym. Sci. A, Polym. Chem., 40, 755 (2002) https://doi.org/10.1002/pola.10155
  66. M. J. Whitcombe and E. N. Vulfson, Adv. Mater., 13, 467 (2001) https://doi.org/10.1002/1521-4095(200104)13:7<467::AID-ADMA467>3.0.CO;2-T
  67. A. K. Hebb, K. Senoo, R. Bhat, and A. I. Cooper, Chem. Mater., 15, 2061 (2003) https://doi.org/10.1021/cm020979i
  68. A. K. Hebb, and A. I. Cooper, Comp. Sci. Technol., 63, 2379 (2003) https://doi.org/10.1016/S0266-3538(03)00271-9
  69. D. C. Sherrington, Chem. Commun., 2275 (1998)
  70. C. D. Wood and A. I. Cooper, Macromolecules, 34, 5 (2001) https://doi.org/10.1021/ma001514l
  71. N. R. Cameron, and D. C. Sherrington, Adv. Polym. Sic., 126, 163 (1996)
  72. W. Busby, N. R. Cameron, and C. A. B. Jahoda, Biomacromolecules, 2, 154 (2001) https://doi.org/10.1021/bm0000889
  73. H. Zhang and A. I. Cooper, Chem. Mater., 14, 4017 (2002) https://doi.org/10.1021/cm0206643
  74. C. T. Lee, P. A. Psathas, K. P. Johnston, J. deGrazia, and T. W. Randolph, Langmuir, 15, 6781 (1999) https://doi.org/10.1021/la9903548
  75. R. Butler, C. M. Davies, and A. I. Cooper, Adv. Mater., 13, 1459 (2001) https://doi.org/10.1002/1521-4095(200110)13:19<1459::AID-ADMA1459>3.0.CO;2-K
  76. R. A. Caruso, M. Giersig, F. Willig, and M. Antonietti, Langmuir, 14, 6333 (1998) https://doi.org/10.1021/la980696y
  77. B. J. Zhang, S. A. Davis, and S. Mann, Chem. Mater., 14, 1369 (2002) https://doi.org/10.1021/cm011251p
  78. E. Dujardin and S. Mann, Adv. Mater., 14, 775 (2002) https://doi.org/10.1002/1521-4095(20020605)14:11<775::AID-ADMA775>3.0.CO;2-0
  79. Y. N. Xia, B. Gates, and Z. Y. Li, Adv. Mater., 13, 409 (2001) https://doi.org/10.1002/1521-4095(200103)13:6<409::AID-ADMA409>3.0.CO;2-C
  80. O. D. Velev and E. W. Kaler, Adv. Mater., 12, 531 (2000) https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<531::AID-ADMA531>3.0.CO;2-S
  81. Y. Fukushima and H. Wakayama, J. Phys. Chem. B, 103, 3062 (1999) https://doi.org/10.1021/jp984649q
  82. H. Wakayama and Y. Fukushima, Chem. Commun., 391 (1999)
  83. H. Wakayama and Y. Fukushima, Ind. Eng. Chem. Res., 39, 4641 (2000) https://doi.org/10.1021/ie000148r
  84. H. Wakayama and Y. Fukushima, Chem. Mater., 12, 756 (2000) https://doi.org/10.1021/cm990487e
  85. H. Wakayama, H. Itahara, N. Tatsuda, S. Inagaki, and Y. Fukushima, Chem. Mater., 13, 2392 (2001) https://doi.org/10.1021/cm001408y
  86. H. Wakayama, S. Inagaki, and Y. Fukushima, J. Am. Ceram. Soc., 85, 161 (2002) https://doi.org/10.1111/j.1151-2916.2002.tb00059.x
  87. H. Ohde, M. Ohde, F. Bailey, H. Kim, and C. M. Wai, Nano Lett., 2, 721 (2002) https://doi.org/10.1021/nl010084p
  88. H. Ohde, J. M. Rodriguez, Y. Xiang-Rong, and C. M. Wai, Chem. Commun., 2353 (2000)
  89. M. Ji, X. Y. Chen, C. M. Wai, and J. L. Fulton, J. Am. Chem. Soc., 121, 2631 (1999) https://doi.org/10.1021/ja9840403
  90. P. S. Shah, J. D. Holmes, K. P. Johnston, and B. A. Korgel, J. Phys. Chem. B, 106, 2545 (2002) https://doi.org/10.1021/jp013931l
  91. N. Z. Clarke, C. Waters, K. A. Johnson, J. Satherley, and D. J. Schiffrin, Langmuir, 17, 6048 (2001) https://doi.org/10.1021/la010794a
  92. J. J. Watkins and T. J. McCarthy, Chem. Mater., 7, 1991 (1995) https://doi.org/10.1021/cm00059a001
  93. P. B. Webb, P. C. Marr, A. J. Parsons, H. S. Gidda, and S. M. Howdle, Pure Appl. Chem., 72, 1347 (2000) https://doi.org/10.1351/pac200072071347
  94. J. Zhang, A. J. Busby, C. J. Roberts, X. Chen, M. C. Davies, S. J. B. Tendler, and S. M. Howdle, Macromolecules, 35, 8869 (2002) https://doi.org/10.1021/ma012258v
  95. K. S. Morley, P. C. Marr, P. B. Webb, A. R. Berry, F. J. Allison, G. MoldoP. D. Brown, and S. M. Howdle, J. Mater. Chem., 12, 1898 (2002) https://doi.org/10.1039/b111111f
  96. K. M. K. Yu, A. M. Steele, J. Zhu, Q. J. Fu, and S. C. Tsang, J. Mater. Chem., 13, 130 (2003) https://doi.org/10.1039/b207064b
  97. J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angew. Chem. Int. Ed., 38, 56 (1999) https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-E
  98. A. S. O'Neil, R. Mokaya, and M. Poliakoff, J. Am. Chem. Soc., 124, 10636 (2002) https://doi.org/10.1021/ja026111a
  99. C. Y. Yeh, S. B. Zhang, and A. Zunger, Phys. Rev. B, 50(14), 405 (1994)
  100. L. Brus, J. Phys. Chem., 98, 3575 (1994) https://doi.org/10.1021/j100065a007
  101. J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, Science, 287, 1471 (2000) https://doi.org/10.1126/science.287.5457.1471
  102. N. R. B. Coleman, M. A. Morris, T. R. Spalding, and J. D. Holmes, J. Am. Chem. Soc., 123, 187 (2001) https://doi.org/10.1021/ja005598p
  103. N. R. B. Coleman, N. O'Sullivan, K. M. Ryan, T. A. Crowley, M. A. Morris, T. R. Spalding, D. C. Steytler, and J. D. Holmes, J. Am. Chem. Soc., 123, 7010 (2001) https://doi.org/10.1021/ja015833j
  104. J. J. Watkins and T. J. McCarthy, Macromolecules, 27, 4845 (1994) https://doi.org/10.1021/ma00095a031
  105. J. J. Watkins and T. J. McCarthy, Macromolecules, 28, 4067 (1995) https://doi.org/10.1021/ma00116a004
  106. E. Kung, A. J. Lesser, and T. J. McCarthy, Macromolecules, 31, 4160 (1997) https://doi.org/10.1021/ma980140h
  107. P. Rajagopalan and T. J. McCarthy, Macromolecules, 31, 4791 (1998) https://doi.org/10.1021/ma9718816
  108. K. A. Arora, A. J. Lesser, and T. J. McCarthy, Macromolecules, 32, 2562 (1999) https://doi.org/10.1021/ma981794t
  109. F. M. Kerton, G. A. Lawless, and S. P. Armes, J. Mater. Chem., 7, 1965 (1997) https://doi.org/10.1039/a704479h
  110. F. E. Henon, M. Camaiti, A. L. C. Burke, R. G. Carbonell, J. M. DeSimone, and F. Piacenti, J. Supercrit. Fluids, 15, 173 (1999) https://doi.org/10.1016/S0896-8446(99)00005-4