Fuzzy Control of Smart Base Isolation System
using Genetic Algorithm
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ABSTRACT

To date, many viable smart base isolation systems have been proposed and investigated. In this study, a novel friction pendulum system (FPS) and an MR damper
are employed as the isolator and supplemental damping device, respectively, of the smart base isolation system. A fuzzy logic controller (FLC) is used to modulate the
MR damper because the FLC has an inherent robustness and ability to handie non linearities and uncertainties. A genetic algorithm (GA) is used for optimization of the
FLC. The main purpose of employing a GA s to determine appropriate fuzzy control rules as well to adjust parameters of the membership functions. To this end, a GA
with a local improvement mechanism is applied. This methed is efficient in improving local portions of chromosomes. Neuro  fuzzy models are used to represent dynamic
behavior of the MR damper and FPS. Effectiveness of the proposed method for optimal design of the FLC is judged based on computed responses 10 several historical
earthquakes. It has been shown that the proposed method can find optimal fuzzy rules and the GA  optimized FLC outperforms not only a passive control strategy but
also a human designed FLC and a conventional semi  active control algorithm.
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1. Introduction Although significant studies have been conducted

in recent years toward development and application

Base isolation is one of the most widely used and of active and semi-active control schemes for vi-

accepted seismic protection systems. While standard  pration control of civil engineering structures in

base isolation techniques, such as insertion of rub- seismic zones, the application of intelligent con-

ber bearings or friction pendulum bearings between
the ground and a structure that is to be protected,
have been applied for a number of years, the addi-
tion of supplemental damping devices is being con-
sidered for large structures in order to reduce the
base drift. However, the addition of damping to
minimize base drift may increase both internal de-
formation and absolute accelerations of the super-
structure, thus defeating many of the gains for

which base isolation is intended.
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trollers, including fuzzy logic controllers(FLC), has
not been addressed extensively. Vibration control
using fuzzy logic has attracted the attention of
structural control engineers during the last few
years. As an alternative to classical control theory,
FLC allows the resolution of imprecise or uncertain
information.

Because of the inherent robustness and ability to
handle nonlinearites and uncertainties, FLC is used
in this study to operate a large MR damper which
is a key component of the smart base isolation sys-
tem in this study. Not only has FLC has been dem-
onstrated to be feasible, but knowledge of expert
can be incorporated into fuzzy rules. Although FLC
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Fuzzy Control of Smart Base Isclation System using Genetic Algorithm

has been used to control a number of structural
systems, sclection of acceptable fuzzy membership
functions has been subjective and time-consuming.
To overcome this difficulty, many research studies
have been reported on the acquisition of fuzzy
rules using fuzzy neural networks. Fuzzy neural
network  systems usually require actual operating
data for identification of control rules. In some cas-
es, it is difficult to obtain the actual data in
advance. Karr"® proposed application of a genetic
algorithm(GA) to the design of a FLC and his work
is now recognized as a pioneering effort in the ap-
plication of GA to fuzzy control. To date, several
studies using GA-optimized FLC" ®
conducted; they have shown that performance of a
GA-designed FLC appears to be better than that of
the human-designed FLC.

Another advantage in the use of a GA is related

have been

to use of a wide range of fitness functions. The fit-
ness function can include variables that are not the
state variables of the controlled system. On the con-
trary, modern control theory that is based on the
state space system can incorporate only state varia-
bles into the performance index. Karr et al. pro-
posed use of a GA to adjust membership functions
of fuzzy control rules. Most of these studies”
did not utilize one of the main characteristics of a
GA, namely that the algorithm would find un-
expected and efficient rules.

Thus, the GA applied in this study focuses on
finding appropriate fuzzy control rules as well as
adjusting the membership functions. To this end, an
effective method that uses a GA with a local im-

)<6)’(7) is em-

provement mechanism(Nagoya approach
ployed for efficient improvement of fuzzy rules.
The Nagoya approach utilizes mechanisms of genet-
ic recombination in bacterial genetics. It is efficient
in improving local portions of chromosomes. How-
ever, the number of fuzzy rules that makes a FLC
should be decided by the designer of the control
system before applying this method. Sometimes an
appropriate number of fuzzy rules cannot be read-
ily selected. Therefore, in what follows, a weighting
factor associated with each rule is introduced into
the chromosomes in order to let the GA weaken or
strengthen the contribution of each rule. Root mean
squared(RMS)
drifts that are normalized with respect to the un-

structural accelerations and base

controlled RMS acceleration and drift responses, re-

spectively, are used as the objective functions as
well as normalized peak acceleration and drift
responses. Moreover, a weighted sum approach is
introduced to combine multiple objectives into a
single fitness function. The level of priority of con-
trol for structural accelerations and base drifts can
be adjusted by varying the weighting factors used
in the fitness function.

The proposed design approach using the GA-opti-
mized FLC for a smart base isolation system is
demonstrated with the help of numerical simula-
tions. Parameters from a large scale experimental
model are employed as the basis for numerical
simulation. The large scale experimental test was
conducted at National Center for Research on
Earthquake Engineering(NCREE) in Taipei, Taiwan.
Powerful modeling capabilities of adaptive neuro-
fuzzy inference system(ANFIS) are used to develop
a neurofuzzy model of the MR damper and the
four FPSs that support the mass. A neuro-fuzzy
model is used to represent dynamic behavior of the
MR damper for various displacement, velocity, and
voltage combinations that are obtained from a series
of performance tests. Modeling of the FPS is carried
out with a nonlinear analytical equation and ncuro-
fuzzy training. A passive damping strategy, human-
designed FLC and conventional semi-active con-
troller(i.e. skyhook) are used to compare the effi-
ciency of the proposed GA-optimized FLC. Based
on computed responses to several historical earth-
quakes, the proposed approach is shown to provide
an optimal FLC for a smart base isolation system
that is equipped with FPS’s and a controllable MR

damper.

2. Model of the smart base isolation system

A series of largescale experimental tests on a
smart base isolated system was recently conducted
at NCREE. The smart base isolation system consists
of a set of four specially-designed FPSs and a 300
kN MR damper as shown in Fig. 1. The effective-
ness of the hybrid base isolated system was ex-
perimentally verified. The system reduced base
drifts without increasing accompanying accelerations
that are manifested during use of a human-designed
FLC. Although the expert's knowledgebased FLC
controls the smart base isolation system effectively
in comparison with passive control strategies during
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Fuzzy Control of Smart Base Isolation System using Genetic Algorithm

the experimental test, there seems to be consid-
erable room for improvement through use of an op-
timal design method. Therefore, this experimental
model of a smart base isolation system is employed
as a numerical example in order to demonstrate im-
proved performance of the FLC by using the pro-
posed design approach.

3. Modeling of MR damper

Extensive performance testing of the 300-kN MR
damper is conducted at NCREE using a dynamic
actuator to collect a sufficient quantity of data that
are evenly distributed over the operational range of
the MR damper. These data enable training of neu-
rofuzzy model that can be used to numerically
simulate dynamic behavior of an MR damper. In
this section, a neuro-fuzzy modeling procedure is
presented to represent behavior of the 300-kN MR
damper.

Special properties of an MR damper include rela-
tionships of parameters such as displacement, veloc-
ity, applied voltage, and resisting force. Because this
relationship has been shown to provide sufficient
information for operation of the damper and is suit-
able for control purposes, these three input and
force output parameters arc used in what follows to
model the 300-kN MR damper. All numerical simu-
lations for training a damper model are made by
using the fuzzy logic toolbox of MATLAB 7.0. After
extensive training through ANFIS, a satisfactory fuz-
zy model of the MR damper is obtained as shown
in Fig. 2.

4. Modeling of FPS

An FPS is a mechanical device that isolates a

Fig. 1 Configuration of smart base isolation system.

structure from its support. It is often considered for
use as an alternative to base isolation that employs
high-density rubber bearings(HDRB). This can be
accomplished by altering bearing material or by
changing the radius of curvature of the spherical
surface. For all data generated in this paper a co-
efficient of friction bearing material is considered to
beas Teflon on steel with a coefficient of friction
0.03 and the radius is set at one meter. In order to
establish pseudo-experimental data(i.c. data that can
be taken as sufficiently similar to experimental be-
havior) that describes the nonlinear force-displace-
ment relationship of a typical FPS system, the fol-
lowing equations can be employed. They are estab-
lished by a simple analytical relationship from fun-

damental principles of mechanics®.

Fowlit sgn() v R —u?
VR? —u? —sgn(i) uu

1)

where F is the external force acting on the FPS, R

is the radius of the spherical bearing surface, u is

horizontal displacement, U is horizontal velocity, u
is the coefficient of friction, sgn indicates a positive
or negative sign of its function, and W is the
weight of the mass supported by the FPS.

Once a data set has been created, ANFIS can be
used to create a FIS. A FIS is basically a black box
that predicts the output from input data based on
rules created by training on a set of known input
and output data. The FIS for the FPS is designed
with two inputs(displacement and velocity) and a
single output{(damping force) based on Egs. (1) and
(2). Fuzzy inference surfaces that represent evalua-
tion of the membership functions for a range of in-

put variables are shown in Fig. 3.

Force (kN)

04

Voltage (Volt) Velocity (m/sec)

Fig. 2 Fuzzy inference surface of trained MR damper model.
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Fig. 3 Fuzzy inference surface for FPS model with « = 0.03.

5. Optimization of FLC using GA

Since Karr first introduced a GA approach to de-
sign of FLCs in 1991, many researchers have opti-
mized FLC using a GA. In this study, a GA with a
local improvement mechanism is employed to find
unexpected and effective fuzzy control rules as well
as to adjust the membership functions. Moreover, a
weighting factor associated with cach fuzzy rule is
introduced to optimize the contribution of the rule
to the FLC.

5.1 Encoding method

Encoding is the genectic representation of a FLC
solution. All of the information represented by the
FLC parameters is encoded in a structure called a
chromosome or string. Each chromosome is made
up of a sequence of genes from a certain alphabet.
Gaussian membership functions are used for all in-
put and output variables becausec they can approx-

imate almost all other types of membership func-

tions by changing the paramecters shown in Eq. (2).

= expl — (x=c)
H p =

) )

The shape of the Gaussian membership function
can be defined by two parameters: ¢ and 0. Here
¢ is the central position, and o is the width(stand-
ard deviation). Using these two parameters, various
types of knowledge can be expressed. These two
parameters are encoded into the gene with a real-
valued representation as shown in Fig. 4.

Figure 4 shows the encoding method employed
for each chromosome. There are two inputs x1, x2
and one output x3 in each rule. A rule has the pa-
rameters of Eq. (2), i.e. the central position cI and
c2 and the width o1 and 02, for inputs x1 and x2,
respectively. For output x3, the central position c¢3
and the width 03 are encoded. The parameter !
specifies the connective used in the antecedent of
the rule. If the connective is “AND,” t = 1 and if
the connective is “OR,” t = 2. According to the
original Nagoya approach, the appropriate number
of fuzzy rules should be decided by the designer
before optimizing the parameters. However, too
many or too few fuzzy rules may decrease effi-
ciency of the FLC. That is, it is difficult to select an
appropriate number of fuzzy rules a priori
Therefore, a weighting factor, w, associated with
each rule is introduced into each gene in order to
let the GA optimize the contribution of rules
through weakening or strengthening the weight of
each rule. An adequate number of fuzzy rules can
be found using this encoding method. In addition,
for application of the Nagoya approach each chro-
mosome is divided into four parts as explained in

IF IF THEN
o] o o3
[ 1 1
AN 1
t=1
OR §
t=2 0 !
cl x1 c2 c3

Inputt input2 Outputi

ci]ct]o2[c2] t[o3]c3] w]

Rule1 [ Rule2 [ Rule3 | Rule4 | Rule5 |

Partl | Part2 | Part3 | Partd |

w: weighting factor

Fig. 4 Encoding structure of a chromosome.
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following section. Each part consists of five rules -
the number five being determined by previous ex-
perience with numerical simulation of similar prob-

lems"”.

5.2 GA with a local improvement mechanism

One of the drawbacks in using a GA for control
is that it often needs a huge population. For exam-
ple, the size of the population is recommended to
be at least equal to the number of variables in a
chromosome”. Also a GA often takes a very large
number of generations to achieve a satisfying
performance. The latter drawback can be sur-
mounted by using a GA with a local improvement
mechanism®”, Fig, 5 shows the flow of the modi-
fied Nagoya scheme used in this study. The basic
idea is to evaluate mutations of the chromosomes
in shorter intervals so as to improve the effective-

ness of the mutation operator.

t-th generation (t+1)-th generation

1stchromosome
r1 T T T ITmT T 17 S I | 2nd o .
* - .
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LT 11
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Fig. 5 Flow of GA with a local improvement mechanism.

To this end, each chromosome is divided into
several parts. GA operations proceed as follows:
First, chromosome 1 in the current population is
copied m times and m-1 clones are mutated. The
mutation operation is applied to the randomly chos-
en i" part. The m clones are then evaluated using
the GA fitness function and the fittest clone
survives. The i" part once selected is never selected

again in the same generation. This procedure is re-

peated for all parts of the chromosome and for all
chromosomes. After this process, other genetic oper-
ators such as selection, reproduction and crossover
operators are applied to whole chromosomes in the
population. This GA is efficient in local improve-
ment of chromosomes, since the evolution is carried
out on the level of chromosomal genes. The ap-
proach mainly focuses on finding control rules and

adjusting membership functions.

5.3 Fitness function

The fitness function is the main criterion that is
used to evaluate each chromosome. It provides an
important connection between the GA and the
physical system that is being modeled. A good fit-
ness function can embody requirements of the base
isolation system and evaluate the chromosomes
properly. As stated earlier a good base isolation
system simultaneously reduces base drift and struc-
tural acceleration thereby limiting or avoiding dam-
age, not only to the structure but also to its
contents. Therefore, the objectives in the design of a
FLC for a smart base isolation system are to mini-
mize both base drift and structural acceleration. In
other words, optimization of the FLC for a smart
base isolation system is a multi-objective optimiza-
tion problem. There are several methods that can
combine multiple objective functions to make a sin-
gle fitness function in a multi-objective optimization
problem. One of these methods, a weighted sum
approach, is employed in this study as shown in

Eq. (3).

k
F(x):z:wifi(x)

i1 @)
where, F(x) is fitness function, fi(x), i = 1, ..., k

are objective functions, w; are weighting factors and

zk:w,. =1
i=1

Base drift and structural acceleration responses
normalized with respect to the uncontrolled base
drift and
spectively, are used here as the multi-objectives.

structural acceleration responses, re-

These objectives include RMS responses as well as

peak responses. Therefore, the fitness function

which has to be minimized, has been obtained by

combining normalized peak base drift {fpu 4in), nor-
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Fuzzy Control of Smart Base isolation System using Genetic Algorithm

malized RMS base drift (fuas wig), normalized peak

acceleration  (fiw o) and normalized RMS  accel-
cration (fuaw o) with two weighting faclors as fol-
lows:

F =200~ pea arin¥ frats drifee) ¥ Uk acoe-fRA1S acect) 4)

where, w; and w: are the drift and acceleration
weighting(importance) factors, respectively. A sum-
mary of the objectives used in this study is given
in Table 1, where, d is controlled basc drift, (} is
uncontrolled basc drift, 4 is controlled acceleration,

a is uncontrolled acceleration, ¢, is controlled RMS

base drift, o; is uncontrolled RMS base drift, o, is

controlled RMS acceleration and o is uncontrolled

RMS acceleration. The maximum value is obtained
from the structural response to a series of historical
carthquakes and is selected as the value of the cor-
responding objective function.

Table 1 Objectives of FLC optimization for smart base
isolation system

Description Objectives

. max|d (1)]
Normalized Peak Base Drift Soat gy = MAX 4~
; earthquakes de}d ([))

t

max]a(t)|
s

Normalized Peak Acceleration | foux wer =

max §————
carthquakes max|&([)|
[

o,

G = Max §———

fRMS - drift mrmquukm{ o- (t)
d

o (!
carthquakes O-ﬁ ([ )

Eleven optimization runs where w; varies from 0

Normalized RMS Base Drift

Normalized RMS Acceleration fRM.Umz =

to 1 in steps of 0.1 are conducted to determine the
shape of the trade-off curve and select an appro-
priate FLC that can reduce both base drift and
structural acceleration. If w; is smaller than w,,
namely smaller than 0.5, the weight of the normal-
ized base drift decreases in comparison with the
weight of the normalized acceleration. Also, if the
weight of the normalized base drift is significantly
smaller than the weight of the normalized accel-
eration, the normalized acceleration becomes a dom-
inant factor in the fitness function. In that case, the
GA mainly decreases the normalized acceleration
instead of the normalized base drift. Therefore, the

priority of the control objectives between base drift
and structural acceleration can be adjusted by vary-
ing w; and w2 As the weighting factor w; increases
from 0 to 1, the dominant factor moves from accel-

eration to base drift.

6. Comparative controllers

6.1 Human Designed FLC

In order to verify control performance of the GA-
optimized FLC, a comparative FLC is used that is
based on the knowledge of a human expert. For a
comparative FLC, the absolute acceleration and base
drift of the structure are selected as inputs and the
output is the command voltage. The number of
membership functions used for the acceleration and
drift inputs are five and six, respectively, while sev-
en membership functions are used for the output.
The input and output subsets are: PH = huge pos-
itive, PB = big positive, PS = small positive, Z =
zero, NS = small negative, NB = big negative, and
NH = huge negative. Table 2 shows the corre-

sponding fuzzy rules in a succinct format.

Table 2 Fuzzy rules

Base Drift
PH | PB | PS | NS | NB | NH

PH | PB | PS | PS | NS | NS [ NB
PS | PH | PH | PS I NS | NH | NH

Z PS | PS 4 Z NS | NS
NS | PH | PH | PS | NS | NH | NH

Structural
Acceleration

NH | PB | PS | PS | NS | NS | NB

The fundamental approach to design of the hu-
man-designed FLC is to minimize both the struc-
tural acceleration and the base drift of the isolated
structure. As a result, this controller divides the re-
sponse of the isolation system into three types.
First, when the absolute acceleration is very large,
the command voltage is specified to be small when
base drift is small and large when the base drift is
very large. In this situation, the command voltage is
suppressed to prevent exciting the acceleration re-
sponses except when the base drift is also very
large. Secondly, when the absolute acceleration is
small, the command voltage is increased in pro-
portion to the base drift. That is, the command
voltage is as large as possible except for the small

response zone. Thirdly, when the absolute accel-
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eration is almost zero, the command voltage is zero
when base drift is small and small when the base
drift is large. This approach provides a zero com-
mand voltage zone around acceleration responses
that are minuscule and softens the MR damper
when seismic excitation is over. Fig. 6 shows the

corresponding control surface.

6.2 Skyhook controller

A skyhook controller is also employed as a com-
parative semi-active controller. As opposed to con-
ventional dampers that tend to reduce the relative
acceleration of the mass, the skyhook controlled
damper attempts to reduce absolute acceleration of

the mass™”

). As the damping coefficient of the sky-
hook damper is optimized, the response of the sys-
tem near its resonant frequency is reduced and the
response at higher frequencies also can be reduced
somewhat. However, in a conventional damper, a
reduced response at resonant frequency is obtained
at the cost of degraded response at higher
frequencies. The skyhook control algorithm used in

this study is given by

Vo if aa >0
V)= e
Vo if au, <0 ®)

min

where, V(1) is the command voltage; V. is the

maximum voltage, namely 1 volt; Vi is the mini-

mum voltage, 0 volt; u, is the absolute velocity and

d,. is the relative velocity.

7. Numerical studies

A numerical model of the smart base isolation

Voltage(v)

Cnsplacement(m) -0.02

Acceteration(m/s

Fig. 6 FIS surface for human-designed FLC. Fig.

system with a FPS and MR damper is implemented
in SIMULINK as shown in Fig. 7. The FLC has
been designed using the fuzzy logic tool box in
Matlab®. Quantization error and saturation of the
analog to digital converter(ADC) and digital to ana-
log converter(DAC) and sensor noise have been in-
cluded in the SIMULINK model in order to simu-
late a realistic representation of the control system.
The ADC and DAC have 16-bit precision, a span of
+10 V, and sensor noise of 0.03 V RMS ie. 0.3% of
the range of the ADC signal. Excitation records that
are used for numerical simulation include three
commonly used earthquakes: El Centro(18 May
1940); Kobe(17 January 1995); and Northridge(17
January 1994). An integration time step of 0.01 sec
is used and the control signal is computed every
0.01 sec. A GA with a local improvement mecha-
nism, discussed in Section 5.2, is employed for opti-
mization of the control system. The population size
is taken to contain 10 individuals. An upper limit
on the number of generations is taken to be 50.
As mentioned previously, priorities among the
objectives of the GA-optimized FLC can be adjusted
by varying weighting factors in Eq.(4). In order to
find the appropriate weighting factor that can effec-
tively reduce both base drift and absolute accel-
eration, a series of numerical simulations is con-
ducted with various weighting factors from 0 to 1.
Variation of the objective fum aip with the corre-
sponding value of the objective feak acet is shown in
Fig. 8. Fig. 9 shows the results of RMS responses.
The objectives foeax arip and frm aip can be improved
at the cost of the degraded objectives foeak accer and
frm_acet , respectively. Therefore, an engineer needs
to choose a proper FLC that can satisfy the desired

performance requirements by selecting appropriate

T 5 Moy i Tomet T % o § T
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7 SIMULINK biock diagram for the smart base isolation system.
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Fuzzy Control of Smart Base Isolation System using Genetic Algorithm

weighting factors. Results from the human-designed
FLC, passiveon case and skyhook control are also
shown in Figs. 8 and 9. The passive-on case can be
thought of as the best passive case for the reduc-
tion of basc drift. As expected, normalized peak
and RMS base drift for the passive-on case are
smaller than those of human-designed FLC and sky-
hook controller. On the other hand, the skyhook
controller shows better performance for the normal-
ized structural acceleration compared to the passive-
on case. It can be seen that the control performance
of the human-designed FLC is intermediate between
passive-on and skyhook controller results; namely, it
can reduce base drift better than the skyhook con-
troller and it can reduce structural acceleration bet-
ter than the passive-on controller.

Performance of the GA-optimized FLC in control-
ling base drift has been found to be better than that
of the best passive case by tuning the weighting
factor. In other words, the GA-optimized FLC using
w; with values greater than 0.7 can reduce the base
drift of the isolated structure more effectively than
for passiveon control. The skyhook controller
shows good performance in reducing peak and
RMS structural acceleration due to its fundamental
design. More importantly, use of the GA-optimized
FLC with wy less than 0.9(0.7 for RMS response)
can reduce structural acceleration much better than
even the skyhook controller. Morcover, the GA-opti-
mized FLC wusing a w; of 0.6~0.9 for peak re-
sponses(0.6 and 0.7 for RMS responses) shows an
improved performance for both the base drift and
absolute acceleration simultancously in comparison
with the human-designed FLC. Therefore, 0.6 and

1.0 -

§ 1.5

& 4
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< 1.4 ©

] §

© x +
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n et e e
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[
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©
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)
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0.4 0.6 038 1.0 1.2
Normalized peak base drift

Fig. 8 Comparison of the peak responses

0.7 are sclected for the weighting factor w; (i.e. 0.4
and 03 for w:) in the following numerical simu-
lation that compares the control performance for six
evaluation criteria(j1~]6).

Peak base shear normalized by the corresponding
shear in the uncontrolled structure and peak force
gencrated by the MR damper normalized by the
weight of the structure are employed as the per-
formance indices for each controller as well as the
four objectives that are included in the fitness func-
tion shown in Eq. (4). Table 3 lists these perform-
ance indices where V is controlled base shear, V is
uncontrolled base shear, F is device force, f is time,
g is earthquake, W is weight of the structure(235.2
kN) and the other notations have the same meaning
as described in Table 1.

Table 3 Evaluation criteria for smart base isolation system

Description Performance index
m;ax|d(t,q)\
Normalized Peak Base Drift JHg)=——=7
m/axld(r,q)l
max|a(t,q)|
Normalized Peak Acceleration JAg)=—"——
max|a(z. q)|
: - T3(q) _o,t.9)
Normalized RMS Base Drift v, .q)
‘ , _o,q)
Normalized RMS Acceleration (q)=—"———
o,(t.q)
m’ax|V(t,q)]
Normalized Peak Base Shear I5g)=—"——
max‘V(z,q)‘
max|F(t,q)|
Normalized Peak Device Force J6(g) = ———
w
c 24
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E o, o +  Skyhook
E = , X Human¥FLC
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Fig. 9 Comparison of the BMS responses
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Table 4 summarizes the control performance in-
dices(J1~J6) for each controller, namely the passive-
on case, the skyhook controller, the human-designed
FLC and the GA-optimized FLC. The base-isolated
structure is subjected to the three historical earth-
quakes mentioned earlier. Because the numerical
model used in this study is a single degree of free-
dom system, normalized peak base shear is a con-
stant multiple of the normalized peak acceleration.
From Table 4 it can be seen that passive-on case
can reduce peak base drifts from approximately
21% to 88%. However, these reductions in base drift
come at the expense of increased structural acc-
elerations. Peak structural accelerations for passive-
on control were increased from approximately 2%
to 41%. Especially peak structural acceleration for
the moderate earthquake(El Centro) is significantly
increased. The skyhook controller can control peak
and RMS structural accelerations better than passive
-on operation of the damper, and also provides be-
tween 6% ~ 36% decreased peak base drift in com-
parison with the uncontrolled case although the re-
duction amount is smaller than for the passive-on
control. Performance of the human-designed FLC
for acceleration is similar and in some cases better
than the skyhook controller. Moreover, the human-
designed FLC can reduce base drifts much better
than the skyhook controller in 5 out of 6 cases.

As mentioned in the previous section, the
performance indices of the GA-optimized FLC are
presented using w; of 0.6 and 0.7. For most cases

Table 4 Control performance comparison

the GA-optimized FLC shows superior performance
in comparison with the human-designed FLC.
Especially, the GA-optimized FLC can effectively
control the worst largest performance indices better
than the other controllers. This is the case because
the GAFLC was optimized in order to reduce the
maximum value of the objective values obtained
from a series of historical earthquakes as described
previously. Thus, GA-optimized FLCs not only
reduce large structural acceleration for the El
Centro earthquake but they also substantially
ameliorate base drift resulting from the Northridge
earthquake. In other words, not only does the GA-
optimized FLC control structural accelerations for
moderate levels of excitation, but it also con-
comitantly mitigates base drifts for large excitations
and near-fault earthquakes. SinceNote that the force
in the MR damper generated by each of the every
FLC(J6) is smaller than that of the passive and
skyhook controllers. Therefore, through wuse of
modulated current, FLCs may reduce the tem-
perature of the MR fluid which is an important
factor for reliable operation of the damper in

practical applications.

8. Conclusions

This study investigates performance of a GA-de-
signed FLC for a hybrid base isolation system con-
sisting of an FP5 isolator and an MR damper. The
FLC is designed using a GA with a local improve-

EQ Controfter J1 J2 J3 Ja J5 J6
Passive on 0.1152 1.4125 0.1168 2.2088 1.4125 0.3231

Skyhook 0.6406 1.3358 0.3937 1.6666 1.3358 0.3127

El Centro Human Fuzzy 04150 1.3268 0.3553 1.7503 1.3268 0.2971
GA  Fuzzy(w; =0.6) 0.4517 0.9438 0.4426 1.26% 0.9438 0.2082

GA  Fuzzy(w: =07) 0.3746 0.983%4 0.1979 1.6692 0.9834 0.2260

Passive on 0.7940 1.017 0.4756 1.3238 1.0171 0.7956

Skyhook 0.9393 0.9958 0.5206 1.0757 0.9958 0.8039

Kobe Human Fuzzy 0.6229 0.9185 0.5346 1.2350 09185 07154
GA Fuzzy(w; =06) 0.7515 0.9065 0.5385 1.1729 0.9065 0.7235

GA Fuzzy(w; =07) 0.5932 09412 0.4167 1.2889 0.9412 0.7500

Passive on 0.5383 1.0359 0.4081 1.3185 1.0359 0.7957

Skyhook 0.8792 1.0315 0.969%0 1.1286 1.0315 08122

Northridge Human Fuzzy 0.8495 0.9542 0.5795 1.1553 0.9542 0.7714
GA  Fuzzyw; =0.6) 0.7865 0.9589 0.5635 1.1241 0.9589 0.7721

GA Fuzzyw; =07 0.6081 0.9623 0.4563 121838 0.9623 0.7615
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ment mechanism. A weighted sum approach is em-
ployed 1o combine multiple objectives, namely re-
duction of basc drift and structural acceleration, in-
to a single fitness function. By varying weighting
tactors in the fitness function, prioritics of the con-
trol goal can be adjusted. An adaptive neuro-fuzzy
inference system is employed to model the control
device and isolator of the smart base isolation
system. Behavior of the FPS and MR damper can
be successfully estimated using these neuro-fuzzy
models.

Passive, skyhook, and a human-designed FLC are
used as comparative controllers to investigate the
effectiveness of the GA-optimized FLC. In the pas-
sive-on control case, base drift can be significantly
reduced but structural acceleration is not well
controlled. The skyhook controller reduces struc-
tural acceleration in comparison with passive-on
control, but only at the expense of larger base drifts
for all earthquakes that are numerically simulated.
A human-designed FLC can reduce base drift better
than the skyhook approach and it can reduce struc-
tural acceleration better than passive-on operation of
the MR damper. That is, a human-designed FLC
can appropriately control both base drift and struc-
a GA-optimized FLC

shows better performance in comparison with the

tural acceleration. Finally,
human-designed FLC for most evaluation criteria.
Furthermore, performance of the GA-optimized FLC
can be easily adjusted by selecting an appropriate
weighting factor according to desired performance
requirements.

Based on numerical studies, a smart base iso-
lation system consisting of a large MR damper and
a novel FPS with an appropriate controller is
shown to achieve significant decreases in base drift
without accompanying increases in acccleration that
accompany passive base isolation systems.
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