Nonlinear Liquid Sloshing Analysis in a Cylindrical Container
by Arbitrary Lagrangian-Eulerian Approach
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ABSTRACT

The solution to a liquid sloshing problem is challenge to the field of engineering. This is not only because the dynamic boundary condition at the free surface is
nonlinear, but also because the pasition of the free surface varies with time in a manner not known a priori.  Therefore, this nonlinear phenomenon, which is characterized
by the oscillation of the unrestrained free surface of the fluid, is a difficult mathematical problem to solve numerically and analytically. in this study, three-dimensional
boundary element method(BEM), which is based on the so—called an arbitrary Lagrangian-Eulerian(ALE) approach for the fluid flow problems with a free surface, was
formulated to solve the behavior of the nonlinear free surface motion. An ALE-BEM has the advantage to track the free surface along any prescribed paths by using only
one displacement variable, even for a three—dimensional problem. Also, some numerical examples were presented to demonstrate the validity and the applicability of the

developed procedure.
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1. Introduction

The motion of fluid with a free surface is one of
the very interesting phenomena in many fields of
engineering. A typical example of a free surface
flow is sloshing in a container, which is subject to
forced oscillation such as fuel sloshing of a liquid
rocket propellant, oil oscillation in a large storage
tank and water oscillation in a reservoir due to
earthquake, and so forth. Many studies have been
presented about sloshing problems with Iarge
amplitude. This phenomenon, called ‘nonlinear slo-
shing’ is analyzed mainly by numerical methods,
which can be classified into three methods, ie., the
finite difference method, the finite element method
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and the boundary element method. Chen and Ha-
roun” addressed the sloshing phenomenon in seis-
mically-excited rectangular liquid storage tanks. The
nonlinearity of both the kinematic and the dynamic
conditions was considered. Because the location of
the free surface is unknown, a numerical scheme
was developed to transform a two dimensional uni-
form rectangular grid into boundary conforming
curvilinear grid with prescribed arbitrary bound-
aries. Three-dimensional large amplitude sloshing in
rectangular tanks has also been attempted. Nakaya-
ma and Washizu® proposed a nonlinear boundary
element method by introducing an error correction
term into the dynamic boundary condition, in order
to suppress the numerical instability and dissi-
pation. Okamoto and Kawahara” introduced a ve-
locity correction method into the Lagrangian finite
element formulation, and they justified their numer-
ical method by comparing the numerical solutions
with independent experimental results. Wu et al.?
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Nonlinear Liquid Sloshing Analysis in a Cylindrical Container by Arbitrary Lagrangian-Eulerian Approach

cmployed the open trapezoidal scheme for the sta-
ble time integration of nonlinear liquid sloshing in
three-dimensional tank. Kasuga et al”, Ushijima®®
and Kim ct al.” have performed numerical simu-
lation of the three dimensional large amplitude lig-
uid sloshing in a cylindrical containers subjected to
horizontal and vertical excitation. Cho and Lee®™ in-
troduce a velocity potential-based nonlincar finite ele-
ment method for the accurate simulation of the
large amplitude liquid sloshing in two-dimensional
baffled tank subject to horizontal forced excitation.

The finite element method has been successfully
applied to large frec surface motion problems.
Generally, it can be classified into three categories:
namely, the Eulerian, Lagrangian and arbitrary
Lagrangian-Eulerian (ALE) descriptions. The Eulerian
approaches encounter many difficulties in trying to
fit the frec surface and often leads to inaccuracies.
It is simple for the Lagrangian description to track
a free surface, but usually it cannot cope easily
with element distortions. Thus, an ALE viewpoint
was introduced to the FEM to overcome the above
shortcomings in both the Eulerian and the
Lagrangian approaches. The ALE finite element
method (FEM) has been applied with good results
to large amplitude sloshing problem. However, this
method requires a lot of computer storage because
a liquid region must be subdivided into a large
number of meshes, and such a tendency becomes
more emphasized in three-dimensional problems.

The boundary element method (BEM) has gained
recognition as a potent and computationally effi-
cient method for the solution of boundary value
problem in elastodynamics and potential problems.
The attractive characteristic of BEM is that it only
requires discretization of the surface of the problem
domain, rather than the surface and the interior do-
main as required by FEM (Brebbia et al.”). There-
fore, three-dimensional liquid region can be effi-
ciently modeled by the boundary element method,
which has the advantage of reducing the boundary
surfacc in the global three-dimensional reference
system to a two-dimensional system defined over
the boundary surface.

In this study, three-dimensional boundary ele-
ment method, which is based on the so-called an
arbitrary Lagrangian-Eulerian approach for the fluid
flow problems with a free surface, is formulated.
An ALE-BEM has the advantage to track the free

surface along any prescribed paths by using only
one displacement variable, even for a three-dimen-
sional problem. The introduction of the ALE de-
scription and treatment of nonlincar boundary con-
ditions for a free surface in view of the ALE de-
scription are represented. Also, the solution proce-
dure of an initial value problem for the evolutional
system with free surface conditions is developed by
the 4-th Runge-Kutta time integration scheme.
Finally, some numerical examples are presented to
demonstrate the validity and the applicability of the
developed procedure.

2. Modelling of Liquid Region by ALE-BEM

2.1 Formulation of Liquid Region

The motion of a liquid in a three dimensional cy-
lindrical tanks is shown in Figure 1, which is sub-
jected to forced oscillation. Hydrodynamic pressure
acts on the walls of a cylindrical tank, when the
system is subjected to a seismic motion. For the
simplicity of the problems, the liquid in the tank is
assumed inviscid, incompressible, and the flow of
the liquid is assumed to be irrotational and time
harmonic. In view of these assumptions, the veloc-
ity potential are defined by
dg(x,1) = Ig(x.1) 0¢(x,1)

— =t

ax ’ ay s : aZ (1)

U =

where, X=(x,y,2) is the position vector of the

liquid and %1, Y2, 43 are the Eulerian velocity. The
equation of motion for this liquid can be repre-

sented as follows.

V2ip(x,t)=0 @)

Figure 1 3-Dimensional Liquid Storage Tank and Coordinate System
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Equation (2) is the Laplace equation and boun-
dary integral equation derived from Lagrange-Green
Identity can be written as follows

(x990 Ex1)

)= ,X,1) dl’ - NIy
e
where ¢ is the source point and X is the receive

point and ¢*(f,x,t) is the fundamental solution of
Laplace equation or Green function. Green function,

¢* (f X, 1 ), satisfies that
Vi (Ex,1)+ A =0 @

where A’ is the Dirac Delta function.

If the fundamental solution ¢*(§ ,X, ¢ ) and the
traction 3¢*(Xi,X,l)/ on apply to the Equation (3),
we need to find out what happens when the point
¢ is on I'. The point, ¢, then becomes a boundary
point and the resulting expression the specialization
of Equation (3) for a point on I'. Considering this
singularity, we can get the boundary integral
equation.

(E0lEr)= rf¢*(5,x,z)a¢§i”)dr- fff‘g{;%@,tm
(5)

Equation (5) for a boundary point is the boun-

dary integral equation that will be solved
numerically. To do so, the boundary surface is dis-

cretized into a series of elements over which the

potential @ and the flux d@/dn are written in
terms of their values at a series of nodal points.
Writing the discretized form of equation (5) for ev-
ery nodal point, a system of linear algebraic equa-
tions is obtained. The boundary surface in the glob-
al three-dimensional reference system can be re-
duced a two-dimensional system defined over the
boundary surface. The complete boundary surface
can be represented by boundary elements. The ge-
ometry of the surface and the associated dis-
tribution of unknowns are approximated within
each element by interpolation from values at nodes
that defined each element.

By those discretization procedure, Equation (5)
can now be rewritten as matrix form in Equation
(6) to give the global system of equations.

e
Ho=G—
=" o (6)
where H and G have dimension NxN and

Nx9NE, respectively.

2.2 Nonlinear Boundary Conditions

2.2.1 Nonlinear Boundary Conditions of a Free Surface

There are two kinds of the boundary conditions
to be prescribed. The first is the so-called free sur-
face conditions on the free surface Si. When fluid
region with a free surface is subjected to an ex-
ternal excitation, the boundary conditions on the
free surface $y are obtained by formulating the fol-

lowing two conditions (Stoker(lo)).

(1) The pressure on the free surface must be equal
to the atmospheric pressure (dynamic boundary
condition).

(2) Liquid particles which are on the free surface
remain on it motion

during subsequent

(kinematic boundary condition).

If the displacement of the free surface from its
stationary position(sloshing height) is 7(x,y.,1) as
shown in Figure 1, the dynamic boundary condition
is expressed by using Beroulli's pressure equation

as

0¢(x,1) RY))

1
+—VoVg + gn(x, y,t) = F(r)
ot P 2

)

where £ is the gravitational acceleration, 0, is
the liquid density and P(x,) is the hydrodynamic
pressure. Assuming the atmospheric pressure to be
zero, the dynamic and kinematic boundary con-

ditions are expressed as follows.

dg(x,1) 1 -

py +5V¢V¢+gl7(x,_\,f)—0 ; at the free
surface ($1) ®
Dx v
i ¢ ; at the free surface ($1) 9

The other is the boundary condition at the inter-
face between liquid and tank wall (82). The boun-
dary condition is that the normal component of the
liquid velocity is equal to the tank wall velocity

and expressed as
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op(x.t)
o “=% ) gt the interface between liquid and
tank (S2) (10a)

where v, (f) is the common velocity of the fluid
and boundary surface in the normal to the surface.
In the case of rigid walls, the boundary condition
at the interface between liquid and tank wall is

99lx.1) _
on . at the interface between liquid and
tank (82) (10b)

The hydrodynamic pressure acting on wall can be
derived by Equation (7).

00(x,1) 1
a P 5V¢V¢ ; hydrodynamic

P(x,t) = —p,

pressure on $» (11)

2.2.2 Basic Theory of Arbitrary Lagrangian-Eulerian Description

Two classical viewpoints have been widely ap-
plicd to describe the motion of a continuous me-
dium. The first is the Eulerian, in which a spatial
co-ordinate system independent of time that co-
incides with a laboratory reference frame is adopted
to record the velocities or any other physical quan-
titics of different fluid particles, which flow through
the same co-ordinate point X(x,y.z) in the field at
every moment. In the second, known as the
Lagrangian, a material particle is always selected to
be traced, and a description of its history of motion
is needed. Usually, a fluid particle A is denoted by
its orginal spatial co-ordinates (a,b,c); i.e.,

A =(a.b,0) (12)
The position change of the particle can be written as
X =X"(A1) (13)

However, an ALE viewpoint (Hirt et al."") may
neither track a specific fluid particle nor observe its
motion at a fixed co-ordinate point. It describes flu-
id movement at a computational node which is in-
dependent of the material motion and may be
moved with an arbirary velocity in the laboratory
system. A node point I is also denoted by its origi-

nal spatial co-ordinates (i, j, k),

L= (i j.k) (14)

and its chage of position by
X = X*(L1) (15)

Let f be any physical quantity which is a con-
tinous function of the spatial variables and time but
relative to the material particles. Such a physical
quantity should be obtained simultaneously at a
co-ordimate point where the fluid particle stays and
simultaneously at a nodal point which contains the
fluid particle. As is well known, a material time de-

rivative is usually used in engineering analysis:

b Y,y

Dt|, ot JIX ot (16)
Similarly for a specified node, one has

Dt|, dt JX ot 7)

where, 9f /0t is the local dervative and df /9X is
the gradient. 0X*/or is the velocity of a fluid par-

ticle and 0X" /ot is the velocity of an ALE node.

In the general case, Df /DY, is not equal to
Df I Dt except when 9X“/dr =oX*/dr, which im-
plies the Lagrangian description; and Df /D1, is not
equal to df /9t except when 9X/or, which implies
the Eulerian description. The advantage of the ALE
description is that the velocities of the mesh nodes
can be choosen freely to control in part the nodal
mevements by the computer so that element dis-
tortions can be avoided.

Consider now the introduction of the ALE view-
point into the boundary element method. A curved
surface equation for a moving boundary is ex-

pressed as
FX,1)=0 (18)

According to the kinematic boudnary condition
that if A" is a fluid particle on the free surface, it
should remain on it during subsequent motion, one
has

F(X(A".0.1)=0 (19)

When the BEM is applied to a moving boudnary
problem, it is necessary for a control node I’ to stay

74 =mA|EEEE =2y
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on the boundary all the time. It follows from
Equation (18) that one must have

F(X*(A",0),1)=0 (20)

Replacing f in both Equations (16) and (17) by F
in both Equations (19) and (20) leads to

DF| _dF OF
0=" ==+=—-U"
Dt|, o X |, (21)
DF| _dF  OF
0="A =2+ .U
Dti, o X |, (22)

where U" and U” are the particle velocity and the
node velocity at X, and oF /90X is the gradient of
the boundary equation and possesses the same di-
rection cosines as the normal n. From Equations
(21) and (22), an important conclusion is drawn:

n-Ul=n.-U4 (23)

This indicates that for an ALE-BEM node it is un-
necessary to track a fluid particle as only the same
velocity component in the normal direction of the
surface is required. This enables one to command
an element node to move along a presciribed path
for the sake of preventing element distortions; for
example, along a straight line, an inclined line, or
even a curved line (Beskos(u)).

Here, Equation (23) is rewritten in the following
form to replace the kinematic boundary condition,
Eqaution (9).

on d¢
= =V 55 on 2= n(x 3,0 (24)

e, 712 +(22] 1
: y

3. Sloshing Analysis of Nonlinear Free Surface
Flow

In this chapter, the numerical solution procedure
for the large amplitude liquid sloshing in the rigid
container subjected to horizontal forced excitation is
developed using the boundary element method and
the nonlinear boundary condition. The free surface
configuration is tracked by the arbitrary Lagran-
gian-Eulerian approach and 4th order Runge-Kutta

method is adopted as a direct time integration

scheme.

3.1 Condensation of a Governing Equation

To analyses the free surface motion, the Equation
(6) derived in previous chapter should be divided
into a free surface region and a fluid-sturcure inter-
face region. Therefore, boundary element Equation

(6) can be presented following matrix form;

HF]’ Hl’”:|{(pl’} - |:G.”l’ GI"]:HQ)I’-"}
H’IP H'V] (P'I G17p GI]I] (Pq.n (25)
where subscript 77 and P denote the nodes for
the free surface of liquid and the nodes on the flu-
id-structure interface, respectively.

Using matrix condensation procedure, Equation

(6) can be condensed into the following three terms;

(pr]/ (pﬂ,rz, (pp,n'

~

H,e,=6G,¢,,+G,0,, (26)

o 1 N 1
where, Hyy=H,,-H.H.H G, =G, -HH.G,,
A _ -1
Gﬂn - an - H'IVprGpn
Consequently, the normal derivative of free sur-
face potential vector is represented as

A ~

Py = G;},(H,mtp,, - anq’p,n) (27)

Thus, the normal flux of the free surface can be
determined by the free surface potential calculated
using the nonlinear boundary conditions and the
normal flux of the fluid-structure interface pre-

scribed by the response of the structure.

3.2 Treatment of Nonlinear Boundary Conditions

To calculate the normal flux of the free surface
using Equation (27) at each time step, the velocity
potential of the free surface and the normal flux of
the fluid-structure interface should be determined,
as discussed in the previous Section 3.1. First, the
normal flux of the fluid-structure interface can be
determined by the response or the prescribed veloc-
ity of the structure in the previous time step using
Equation (10). Second, in order to maintain stability

in the numerical computations, the dynamic boun-
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dary condition, Equation (8) should be treated care-
dg /ot

rivative and must be converted into an ALE value

fully. The term is an Eulerian local de-

by using Equation (22) before calculation.

%:Bﬂ_[%).(ﬂ)

ot Dt 7 ot (28)

Such a relationship brings the dynamic boundary
condition into the form

(29)

Using the rate of change of the velocity potential,
Equation (29), the velocity potential of the free sur-

face can be calculated by the direct time integration.

3.3 Solution Procedure

In order to solve the above nonlinear sloshing
problem, the observation time interval is divided in-
to a finite number such that
t, =k Atk = 0,1,2,--). Starting from the initial sol-

of sub-intervals

utions ¢”and 7°, the governing equation, Equation

(2) defined in current flow domain, r’ is succes-

sively solved to seek ¢* with the boundary con-
dition, Equations (8)-(10). From which the con-

densed equation (27) is solved and the flux values

(0¢/on) can be obtained on a free surface. By us-

ing these potential gradients, fluid particle velocity
filed v'(«*,v*,w*) and the sloshing velocity 7 are

computed and the free surface tracking is
performed. By the direct time integration of the free

surface boundary conditions, Equations (24) and
(29), ¢*"', 7" and 1**' are identified. In this pa-
per, the following modified 4th-order Runge-Kutta
scheme wherein the unknowns associated with the
potential ¢ and (0¢/dn), but not the position of
the free surface boundary, are updated in the inter-

mediate steps.

3.4 Numerical Computation Techniques

In nearly all computations, the wave profile, after
a sufficiently long time, devcloped a saw-toothed
appearance, in which the computed positions of the
particles lay alternatively above and below a smooth

curve. The cause of the instability is that such high-

o

wave number instabilitics are non-physical and are
closely related to the accuracy of the velocity calcu-
lations for the free-surface particles. Many re-
searches showed that the rate of growth of the in-
stability, per unit time, was independent of the
number of time steps. Hence, it is not due simply
to rounding errors. The growth may be partly
physical, being similar to the growth of short grav-
ity-waves by horizontal compressions of the crests
of longer waves. In reality, these instabilities are
partly damped by viscosity, which is neglected
here.

The instability was effectively removed by the fol-
lowing procedure. A function f(x) defined at equal-
ly spaced points ¥j(j = 1,2,3), and in which alter-
nate points lie on a smooth curve, can be locally

approximated by two polynomials, say

h(x) = (a, + a,x + a,x* + -+ a,x") +

(=17 (by + byx +--+b, X" (30)

The first bracket represents a smooth mean curve,
the remainder a quantity that oscillates with period
2 in j. The coefficients 4,4, ,--- and by, b, may
be chosen uniquely so that A(x) = f(x) exactly at
(2n+1) consecutive points *;, say (j-n) to (j+n)
inclusive. Then, as a smoothed function, the even

part can be taken.

n

h(x) = ap + ax + a,x* +-+a,x (31)

In the case n=2, this leads to the 5-point smooth-

ing formula as follows,

?j = '1'(_ fj—z +4f_,>1 + lo.f_,' +4f_/+1 - fj+2)

16 32)

The formula is applied for the calculated values
of 71 and ¢ at every time-step. When the above 5
points cannot be taken at right or left end, the fol-
lowing modified formula is applied:

— 1 .
At right side, /= ﬁ(_ fioa+4f5 +10f; +4f,~+|)

(33)

- 1, :
At left side, /i = ﬁ(4f,-_, +10f; +4f 0 - f/+2)
(34)

Next, the accuracy of numerical solutions gen-
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erated by developed procedure is checked by esti-
mating the volume of fluid occupied in container at
each time step. If any change (i.e., increase or de-
crease) of the volume at some time step is found,
the idea of adaptive refinement of boundary ele-
ment mesh in numerical computation to avoid un-
real change of liquid volume.

Lastly, all internal nodes are relocated such that
the nodes located on the same vertical line should
be in almost uniform spacing. In this manner, the
free surface is tracked with the total liquid volume
unchanged and the boundary element mesh is

adapted to keep the mesh regularity fairly.

4. Verification of Liquid Sloshing Analysis

In this chapter, the numerical results of the small
amplitude free oscillation were presented to verify
the validity of the developed numerical algorithm.
Then, in order to examine the applicability of the
proposed solution procedure, the results of the hori-
zontally forced oscillation were presented in the 3-D
cylindrical container.

4.1 Small Amplitude Free Oscillation

A comparison of a number of data published in
the literature with the present analysis is presented
in this section. First, a free oscillation problem of
fluids in a rigid cylindrical container, with has radi-
us R and stationary state height H, as shown in
Figure 2, was analyzed. The boundary of the fluid
domain was divided into 72 elements and 242 no-
des, and the free surface part was divided into 24
elements and 81 nodes, in Figure 2.

In numerical performance, the dimensions of the
analysis models are r(radius)=0.5m, h’(height)=0.5m

///{/’:\\\
w

H=0.5m

| |

R=1.0m

{a) Analysis Domain (b) Boundary Element Mesh
Figure 2 Analysis Domain and Boundary Element Mesh

as the geometrical conditions of a container with
the density of liquid equal to 1000kg/m’. The time
step size, At, was set to 5x10” sec throughout the
numerical experiments. The initial profile of a free
surface should be set up before the numerical per-
formance on free oscillation. In this case, the fol-
lowing initial profile is 77 with i=1 and the small
amplitude of A=0.1.

AT Er &H i
nr,0) = E {; a),-Jl( 5 ]cosh(T) cos((:‘,-t)} cosd (35)

H
o) = £ ¢ tanh| &
R R

I

(36)

Where, J, is the Bessel function of the first kind,

£ is the i-th solution of J,(&R)=0and A is an arbi-
trary constant.

Figure 3 shows the curves 7(r,8)of the height of
the free surface at two points (r =R, @ =0and
r=R, @=r) against the time. The results were
compared with those of the linear theory by
Takayama and the nonlinear theory by Kasuga et
al.®” Based on this figure, the results presented a

good agreement with the linear theory.

4.2 Forced Horizontal Oscillation

To validate the present computational algorithm
of the nonlinear analysis, the transient nonlinear
problem of a cylindrical rigid container filled with
water in 3-D was considered. The similar problem

© and

was solved by Kasuga et al.” and Ushijima
the results are available in the literature. The con-
tainer has the same dimensions as those in Section
4.1 and is subject to the sinusoidal forced horizontal

acceleration of the type that is presented as

0.020

presest study

0.015 X Kasuga
— A Linear theory
£
- 0010
£ x xa o x
i) Xy oK Lx x «
() % X
I 0005 x x x R £ s
o x % 5
£ TSN * x
= 4 x
@ 0000 x % X
L x s

x

@ * % *

-0.008 : - N x x

x x X % 2
x I3 ax ax x
-0.010
] 1 2 3 4 5
time (sec)

Figure 3 Time History of n{r.#) for Small Amplitude Free

Oscillation
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a(t)=-X,w* sinw-t (37)

where, X, and w are the amplitude and the fre-
quency of the forced horizontal displacement,
respectively. In numerical performance, X,=0.01m
and w=5.85rad/s are adopted as parameters of the
forced acceleration.

Figure 4 shows the boundary element mesh pro-
file of the fluid domain, which is obtained using
the Lagrangian approach, at different time steps be-
fore and after applying the smoothing technique,
respectively. The severity of the mesh distortion
may be observed after 2.65sec. These kinds of dis-
tortions lead to the numerical instability. To over-
come this problem in the Lagrangian method, the
smoothing (node repositioning) technique is ado-
pted. After smoothing the mesh at every iteration
of time integration, the numerical computations
were advanced to obtain the required results. The
boundary element mesh profile is shown in Figure
4. The advantage of the ALE description is that the
velocities of the mesh nodes can be choosen freely

T=1.6sec

T=2.65sec

T=3.75sec

(a) Before Applying the Smoothing Technigue

to control, in part, the nodal mevements through
the computer, so that element distortions can be
avoided. Figure 5 shows the boundary element
mesh profile using the ALE method without the
mesh smoothing procedure. It was discovered that
the mesh distortions were considerably reduced.
However, as shown in the dynamic boundary
condition Equation (29), the material velocity ob-
tained by the Lagrangian manner was used in the
ALE method. Therefore, the smoothing techniques
are necessary in order to avoid the unexpected nu-
merical instability. Figure 6 shows the time history

of the sloshing height at ¥ = R, € =0 and total
volume change during analysis by ALE approach.
Based on the results, it was determined that the
mesh distortions can be avoided by the ALE
method. However, to avoid the unexpected numer-
ical instabilities, some techniques, such as the
smoothing and the volume correction, must be

considered.

T=2.65sec

T=4.3sec

T=3.75sec

(b) After Applying the Smoothing Technique

Figure 4 Mesh Profile by the Lagrangian Approach
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k.

T=2.65sec

|
i

T=4.3sec
Figure 5 Mesh Profile by the ALE Approach

T=3.75secC

0.6

ALE with error correctin
- - — = - ALE wlo eror correction

Sloshing Height (m)

time (sec)
(a) Free Surface Elevation

The results, shown in Figure 7 illustrate shows
the time history of the sloshing height of the free
surface at r = R and @ = ( for both the linear and
nonlinear free surface boundary conditions. The up-
ward amplitude of sloshing becomes larger than the
downward amplitude as time increases, indicating
the typical non-linear characteristic of free surface
sloshing. The results are quite similar to those re-
ported by Ushijima®, although the present ampli-
tudes are slightly larger than their results, which
were obtained considering the liquid viscosity.

Two significant terms of the dynamic boundary
condition, varying in time at » = R and @ = Q of the
free surface, are shown in Figure 8. When the non-
linear sloshing height of the water wave rises above
the linear sloshing height, the velocity squared terms
05V ¢ V¢ becomes larger than g - n. This is no lon-
ger a small quantity that can be ignored during the
subsequent calculation. Thus, the nonlinear boundary
conditions of the free surface must be considered in
order to determine the exact sloshing height.

5. Conclusions

In this study, a numerical solution procedure has
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been developed in order to simulate large ampli-
tude liquid motion in a cylindrical three-dimen-
sional container. The procedure, which is based on
the arbitrary Lagrangian-Eulerian description of a
mathematical model of the problem, consists of the
boundary element method and the solution algo-
rithm with the 4-th order Runge-Kutta method. The
ALE method reduces the numerical instabilities and
the boundary element method requires discretiza-
than the

volume. Additionally, to avoid numerical insta-

tion of the boundary surface rather
bilities and accumulation error, numerical techni-
ques, such as mesh smoothing and volume correc-
tion, are used. The developed method for the liquid
region was validated through comparison of the
analyses results with the published literature.
Through further study using developed algo-
rithm, a numerical algorithm will be represented for
the nonlinear coupled slosh dynamics of liquid stor-
age tanks considering the flexibility of the con-
tainer. From the results of this study, the free sur-
face can be tracked by only one conirol displace-
ment variable even though it was a three-dimen-
sional problem. Thus, the entire equation of the
nonlinear slosh dynamic problem can be coupled
effectively based on the ALE-BEM. In order to con-
struct the governing equation of the whole system,
the finite elements of a structure and the boundary
elements of a fluid region are coupled using the
equilibrium and compatibility conditions, and the
NFBC. Using these procedure, the dynamic behav-
ior of a liquid storage tank considering fluid-struc-
ture interaction with nonlinear free surface boun-
dary conditions can be studied more extensively.
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