122 International Journal of Control, Automation, and Systems, vol. 3, no. 1, pp. 122-129, March 2005

Protocol Implementations for Web Based Control Systems

Sugoog Shon

Abstract: We describe the MiniWeb[7] TCP/IP stack (mlP), which is an extremely small
implementation of the TCP/IP protocol suite running 8 or 32-bit microcontrollers intended for
embedded control systems, and satisfying the subset of RFC1122 requirements needed for host-
to-host interoperability over different platforms. Our TCP/IP implementation does sacrifice
some of TCP's mechanisms such as fragmentation, urgent data, retransmission, or congestion
control. Our implementation is applicable to web based controllers. The network protocols are
tested in operational networks using CommView and Dummynet where the various operational
parameters such as bandwidth, delay, and queue sizes can be set and controlled.

Keywords: CommView, Dummynet, HTTP, newtrok driver, protocol stack, TCP, UDP.

1. INTRODUCTION

Recently, the interest in connecting even small
devices to an existing IP network such as the global
Internet has increased greatly. In order to be able to
communicate over the Internet, implementation of the
TCP/IP protocol stack is needed. With the success of
the Internet, TCP/IP protocol suite has become a
global standard for communication. For embedded
systems, being able to run TCP/IP makes it possible to
connect the systems directly to the Internet.

The RFC1122[1] specifies requirements for host
system implementations of the Internet protocol suite.
This RFC covers the communication protocol layers:
link layer, IP layer, and transport layer. Its companion
RFC1123, "Requirements for Internet Hosts --
Application and Support", deals with the application
layer protocols. A TCP/IP implementation that
violates the requirements of host to host
communication may not be able to communicate with
other TCP/IP implementations and may even lead to
network failures.

Traditional TCP/IP implementations are derived
from adaptations of the Berkeley BSD TCP/IP
implementation. The TCP/IP implementations have
required far too many resources both in terms of code
size and memory usage. Code size of a few hundred
kilobytes and RAM requirements of several hundreds

Manuscript received September 7, 2004; accepted January
27, 2005. Recommended by Editorial Board member Dong-
Ho Cho under the direction of Editor Keum-Shik Hong. This
work was supported from the Basic Research Program of the
Korea Science and Engineering Foundation under Grant
KOSEF R05-2002-000-00119-0.

Sugoog Shon is with the Department of Information and
Telecommunication Engineering, Suwon University, San 2-2
Wau-Ri, Bongdam-Up, Hwasung-Si, Kyungki-Do 445-743,
Korea (e-mail: sshon@suwon.ac.kr).

of kilobytes have made it impossible to fit the full
TCP/IP stack into systems with RAM of a few
kilobytes of data and ROM for less than 100 kilobytes
of code.

There are numerous small TCP/IP implementations
for embedded systems. The target architectures range
from small 8-bit microcontrollers to 32-bit RISC
architectures. An example of an 8 bit based TCP/IP
implementation is the ulP[3][8], which needs around
5164 bytes of code space on an Atmegal28 AVR
system. The iPic match-head sized server [4], Jeremy
Bentham's PICmicro stack 2], and the Atmel TCP/IP
stack [5] are examples of implementations for
embedded TCP/IP stacks. Some of the embedded
TCP/IP implementations are simplified TCP/IP
implementation and some are standards compliant
TCP/IP implementation

Our goal is to realize the TCP/IP stack for a specific
application such as a web controller, which performs
simple jobs like switch on/off, controller settings, and
variable readings. One instance of the embedded
control systems is an Internet based RF tag reader that
can read RF tag information over the Internet.

For some considerations for embedded control
systems, a web application does not require support
for urgent data and does not need to actively open
TCP connections to other hosts. Removing those
mechanisms can reduce the complexity required to put
it into practice. Retransmissions may not be made by
the TCP module in the embedded control system
because nothing is known about the active
connections. Omission of TCP's congestion control
mechanisms may also be a consideration while an
implementation with no congestion control might
work well when connected to a single Ethernet
segment, because congestion is primarily caused by
the amount of packets in the network. No support for
reassembling fragmented IP packets if fragmented IP

Protocol Implementations for Web Based Control Systems 123

packets are quite infrequent [6] is also a consideration.
For the embedded systems, the other issue of the
TCP/IP implementation is to maintain both the code
size and the memory usage to a minimum. TCP/IP is
an order of magnitude smaller than any traditional
generic TCP/IP stack today. Our implementation is an
extremely simplified TCP/IP implementation that
includes implementations of IP, ICMP, UDP and TCP.
Our implementations have been ported to numerous 8-
and 32-bit platforms such as the 8032, AVR, and
80386 CPUs. Finally, we apply the protocol to the
embedded Web RF reader and discuss the code size
for the implementation. We also verify the
performance and the correctness of a specification.

2. TCP/IP PROTOCOL SUITE

The full TCP/IP suite [9] consists of numerous
protocols, ranging from low level protocols such as
ARP, which translates IP addresses to MAC addresses,
to application level protocols such as HTTP that is
used to transfer web pages as shown below in Fig. 1.
Each layer’s input/output can be modeled as data
buffers related to the interface layer. For instance, data
arrives asynchronously from both the network and the
application, and the TCP/IP stack maintains data
buffers in which packets are kept while waiting for
service.

2.1. Ethernet network driver

The network driver is used to transfer data from the
receive buffer ring of the NIC to the host PC's
memory, or inversely. There are NIC controllers that
facilitate removing data from a ring buffer by
providing a remote DMA channel to transfer data
from the ring to an I/O port that is readable by the host
system. Because of the asynchronous nature of the
operation, the driver must be interrupt driven.
Typically, packet reception is given high priority since
delaying of packet removal may overflow the receive
buffer ring. If several packets in the ring have been
queued, all packets should be removed in one process.

Application | HTTP

Transport |

Network

Data Link |

Fig. 1. TCP/IP layer and data buffer model.

Next, the packet receives interface between the IP
layer and the data link layer processes when the
incoming packet is addressed to a link-layer broadcast
address [1].

22.1P

Usually, an IP package involves eight components: a
header-adding module, a processing module, a routing
module, a fragmentation module, a reassembly module,
a routing table, and a reassembly table. The IP layer
also includes input and output queues. The IP receives
an IP packet, either from the data link layer or from a
higher level protocol. Usually (Bidirectional case), the
design uses two types of queues: input queues and
output queues.

The lack of flow control can create a major problem
in the operation of IP: congestion. The source host
never knows if the routers or the destination host have
been overwhelmed with datagrams. The source host
never knows if it is producing datagrams faster than
they can be forwarded by routers or processed by the
destination host. However, embedded hosts have a
limited-size queue (buffer) for incoming datagrams
waiting to be forwarded or to be processed. If the
datagrams are received much faster than they can be
processed, the queue may overflow. In this case, the
host has no choice but to discard some of the
datagrams.

2.3. TCP

Transport layer protocols lie between user
applications and the network. Although they offer user
oriented services, their design is based on assumptions
about network characteristics. TCP is a stream-service,
connection-oriented protocol that utilizes a state
transition diagram. It is so complex that its actual
code is tens of thousands of lines. TCP operation
supports flow and congestion control, and
segmentation and reassembly of the user data stream.
A TCP package involves a table called Transmission
Control Blocks, a set of timers, and three software
modules: a main module, an input processing module,
and an output processing module [9].

In order to implement full TCP, periodic timeouts
are required to drive TCP mechanisms that depend on
timers, such as delayed acknowledgments, retrans-
missions and round-trip time estimations. The TCP/IP
stack has an acknowledgment mechanism for the
received packets. Very simply, when data arrives at
the recipient, the protocol requires that it send back an
acknowledgement of this data. The protocol specifies
that the bytes of data are sequentially numbered, so
that the recipient can acknowledge data by naming the
highest numbered byte of data it has received, which
also acknowledges the previous bytes. The protocol
contains only a general assertion that data should be
acknowledged promptly, but gives no more specific

124 Sugoog Shon

indication as to how quickly an acknowledgement
must be sent, or how much data should be
acknowledged in each separate acknowledgement.
TCP has mechanisms for limiting the amount of data
that is sent over the network, and each connection has
a queue on which the data is held while waiting to be
transmitted. The data is not removed from the queue
until the receiver has acknowledged the reception of
the data. If no acknowledgment is received within a
specific time, the data is retransmitted.

TCP breaks the byte stream into appropriately sized
segments and each segment is sent in its own IP
packet. The IP packets are sent out on the network by
the network device driver. If the maximum packet size
of the other network is smaller than the size of the IP
packet, the packet is fragmented into smaller packets
by the router. If possible, the size of the TCP segment
is chosen so that fragmentation is minimized. The
final recipient of the packet will have to reassemble
any fragmented [P packets before they can be passed
to higher layers. In many TCP implementations,
including the BSD implementation, the urgent data
feature increases the complexity of the
implementation because it requires an asynchronous
notification mechanism.

2.4. Application program interface

The Application Program Interface (API) defines
the way the application program interacts with the
TCP/IP stack. The most commonly used API for
TCP/IP is the BSD socket API, which is used in most
Unix systems and has heavily influenced the
Microsoft Windows WinSock API.

The BSD socket interface is used in multithread
operating systems. A multithreaded environment is
significantly more expensive to run not only because
of the increased code complexity involved in thread
management, but also because of the extra memory
needed for maintaining the per-thread state.

2.5. Measurements

For TCP/IP implementations for high-end systems,
processing time is dominated by the checksum
calculation loop, the operation of copying packet data
and context switching [10]. The network performance
is analyzed to enhance QoS of TCP [11]. The
performance of a network in the case of a TCP/IP is
highly affected depending upon the Retransmit Time
Out (RTO). In order to increase the network capability,
the Round Trip Time (RTT) for a packet should be
reduced.

For testing and verifying RTT for networking
protocols, Dummynet is used as a tool that runs in
operational networks, and/or through simulations [12].

3. PROTOCOL IMPLEMENTATIONS

Application| HTTP

Transport

Netwotk

One corrrnon

Data Link data buffer

Fig. 2. Proposed data buffer model.

Our implementation of the subset of RFC 1122 or
1123 requirements can also provide interoperability of
host-to-host communication. Many TCP mechanisms
are essential if an embedded device is to communicate
with another. However, it is possible to remove certain
TCP/IP mechanisms that are very rarely used in
special situations such as embedded control systems.
The protocols in the TCP/IP protocol suite are
designed in a layered fashion where each protocol
performs a specific function and the interactions
between the protocol layers are strictly defined.

One design goal for the MiniWeb TCP/IP(mIP)
implementation is to minimize memory resources. In
the mIP implementation, the protocols are tightly
coupled in order to save code space. Of course, the
interoperability to the Internet has to be satisfied. For
mlP, we proposed one global buffer mechanism,
instead of dynamic buffer and memory allocation.
Thus, the incoming or outgoing data within each layer
is common for each layer as shown in Fig. 2. The
single global buffer can hold packets and has a fixed
size for holding connection state. The size of the
buffer is determined by a configuration option. The
global packet buffer is large enough to contain one
packet of maximum size.

The mIP can be run either as a task in a
multitasking MicroC/OS system based on Intel80386
or Atmegali28, or as the main program in a single
tasking system based on 8032.

3.1. Network driver

When a packet arrives from a network, the Ethernet
device driver places it in the global buffer and calls
the mIP stack. If the packet contains data, the mIP
stack will notify the corresponding application.
Packets that arrive when the application is processing
the data must be queued by the network device driver.

The network driver initiates a transmission
whenever the upper layer software passes a packet to
the driver or the inverse.

The mIP polls to check for packets from NIC's
Interrupt Status Register (ISR) every time the periodic
timer fires. The main loop consists of a packet
transmitted routine and a packet received routine,

Protocol Implementations for Web Based Control Systems 125

where the loop is concerned with
originating from receptions,
erroneous transmissions.

After the NIC initialization code completes
successfully, the main function of the firmware goes
into the loop. If the microcontroller pin INTO goes
high, this apparently signifies that a good packet has
been received into the RTL8019AS's receive buffer
ring. If a packet has arrived, the input handler of the
mlIP stack is invoked. The RTL8019AS's receive
buffer ring precedes each incoming packet with a 4-
byte header. This header contains useful information
concerning the packet such as its length. Checksum in
the link layer is calculated by taking the 16 bit sums.
The sum is then one's complemented.

Ethernet controllers have on-chip buffers that are
large enough to contain at least 4 maximum sized
Ethernet frames. RTL8019AS has a buffer with the
size of 16 Kbytes on the chip. This RAM is
completely controlled by the chip and offers buffering
for multiple packet data. If the buffer is full, the
incoming packet is dropped. This will cause
performance degradation because mlP advertises a
very small receiver window, which means that only a
single TCP segment will be in the network per
connection. The driver's packet receives commands
and automatically takes the packet off the receive
buffer ring. The received packet is next stored into the
global buffer.

On the other hand, if the driver is unable to transmit
the packet in the global buffer immediately (i.e.
receiver is busy), the packet in the global buffer is
paused to transmit. After the NIC controllers interrupt
the microcontroller to signal the end of the reception
and indicate status information in the Transmit
STATUS register, the packet in the global buffer can
be transmitted.

interrupts
transmissions, and

3.2. Internet protocol (IP)

The IP layer code in mIP has two responsibilities:
verifying the correctness of the IP header of incoming
packets and demultiplexing the packet between the
ARP, ICMP, UDP, and TCP protocols.

The ARP protocol maps between 32-bit IP
addresses and 48-bit Ethernet MAC addresses and is
needed for TCP/IP operation on an Ethernet. ARP
requests for an [P address is to be overwritten to the
outgoing IP packet for which the request is sent.
When mIP gets an ARP reply, only the ARP mapping

is updated. Implementation must support the specific- -

length packets. The packet receive interface between
the IP layer and the link layer is summarized in Table
1. The mIP column indicates the item implemented
for the link layer.

The 1ICMP protocol is used for reporting soft error
conditions and for querying host parameters. Its main
use is, however, the echo mechanism that is used by

the ping program. The ICMP implementation in mIP
is very simple as we have restricted it to only
implement ICMP echo messages. Replies to echo
messages are constructed by simply swapping the
source and destination IP addresses of incoming echo
requests and rewriting the ICMP header with the
Echo-Reply message type. The ICMP checksum is
adjusted using standard techniques [13]. Since only
the I[CMP echo message is implemented, there is no
support for path MTU discovery or ICMP redirect
messages. Neither of these is strictly required for
interoperability; they are performance enhancement
mechanisms. Table 2 shows the item implemented for
the ICMP.

When incoming packets arrive, the IP layer
performs a few simple checks, such as whether the
destination IP address of the incoming packet matches
any of the local IP address and verifies the IP header
checksum. IP fragment and the fragment reassembly
mechanism are not implemented in mIP. The current
implementation only has a single buffer for holding
packets to be reassembled, and therefore does not
support simultaneous reassembly of more than one
packet. We believe this to be a reasonable decision,
since fragmented packets are uncommon. However,
extending our implementation to support multiple
buffers would be straightforward. Since there are no
IP options that are strictly required and since they are
very uncommon, mIP drops any IP options in received
packets. Table 3 shows the items implemented for the
IP protocol.

Table 1. Link layer implementations.

. . RFC 1122
Link Layer Requirements (MUST) mlP
ARP 0 0
Ethernet and IEEE 802 Encapsulation 0 0
Link layer report broadcasts to IP 0 «
layer
IP layer pass TOS to link layer 0 X

Table 2. ICMP implementations.
RFC
ICMP Requirements 1122 |mlP
(MUST)

ICMP Error message:
-Destination Unreachable, Redirect, Source 0 X
Quench, Time Exceeded, Parameter Problem
ICMP Echo Request or Reply 0 0
ICMP Timestamp and Timestamp

0 X
Reply
ICMP Address Mask Request and

0 X
Reply

126 Sugoog Shon

Table 3. IP protocol implementations.

Table 4. TCP implementations.

IP Requirements RFC1122 mlP . RFC
(MUST) TCP Requirements 1122 mlP
Version check 0 0 (MUST)
Verify IP checksum 0 0 Flow control 0 0
ﬁiddrf?;Sin_g 8 0 Urgent Data 0 X
entification X ;
Fragmentation and Reassembly 0 X TCP Options 0 X
TOS 0 X TCP Checksums 0 0
TTL 0 X Multiple Connections 0 10(single)
IP Options 0 X RTT (timer) 0 X
Retransmissions 0 X
3.3. Transmission control protocol (TCP) Coneestion control 0 <
TCP establishes the logical equivalent of a physical £
connection between two points. Data then passes Error Control 0 X
bidirectionally along this connection. Both points Receiving ICMP Messages from 1P 0 0
must keep track of the data sent and received so that Application Interface (for HTTP) 0 0

they can detect any omissions or duplications in the
data stream.

A TCP software is implemented as a finite state
machine that goes through a limited number of states.
At any moment, the machine is in one of the states. It
remains in that state until an event happens. The event
can take the machine to a new state. We use cases to
handle the state simply. Each state is implemented as
defined in the state transition diagram [9].

Each TCP connection requires a certain amount of
state information in the embedded device. Commonly
used techniques [2] are listed such as lock step
method, block sequencing, and byte-sequencing
scheme. Because the state information uses RAM, we
have aimed towards minimizing the amount of state
needed for each connection in our implementations.

The TCP implementation in mIP is driven by an
incoming packet. The packet is parsed by TCP. After
verifying the TCP checksum, the source and destination
port number and IP address are used to demultiplex the
packet. When the sequence and acknowledgment
numbers have been checked, the packet will be handled
differently depending on the current TCP state. If the
packet is a connection request, TCP allows a
connection to listen for the incoming connection
request that is identified by the 16-bit port number.

For a flow control, mIP does not implement sliding
window mechanism, instead, it just uses a simple
window mechanism. The receiver of data returns to the
sender a number, which is the size of the packet that the
receiver currently has available for additional data. This
number of bytes, called the window, is the maximum
that the sender is permitted to transmit until the receiver
returns an additional window. It is important to note
that even though most TCP implementations use the
sliding window algorithm, it is not required by the TCP
specifications. mIP allows only a single TCP segment
per connection to be acknowledged at any given time.
The mIP implementation with the proposed global
buffer data model requires far less state information

and still has interoperability to other hosts even if the
sliding window mechanism does not exist.

If data has been lost in the network, the application
will have to resend the data. However, the
retransmission operation is not considered in mlIP.

TCP continuously estimates the current Round-Trip
Time (RTT) of every active connection in order to
find a suitable value for the retransmission time-out.
In order to estimate RTT estimation, TCP requires a
periodic timer. Karn's algorithm [15] is used to ensure
that retransmissions do not skew the estimates.
However, mIP does not support RTT estimation for
retransmission. Table 4 shows the items implemented
for the TCP protocol.

The congestion control mechanism is used to limit
the number of simultaneous TCP segments in the
network. Our mIP does not need to control the
congestion mechanism because only one in-flight
TCP segment per connection is assumed.

We do not implement in the case of TCP’s urgent
data mechanism because our implementations already
use an asynchronous event based APL

3.4. Web server program interface

If the packet contains data that is to be delivered to
the web server, the web server is invoked by the
means of a tight couple call. If the incoming packet
acknowledges previously sent data, the connection
state is updated and the application is informed,
allowing it to send out new data.

We have chosen an event driven interface where the
web server is invoked in response to certain events.
TCP/IP stacks buffer the transmitted data in memory
until the data has been successfully delivered to the
other end of the connection. The data must be
buffered in memory while waiting for an
acknowledgment. The event based interface fits well
in the event based structure used by operating systems
such as MicroC/OS.

Protocol Implementations for Web Based Control Systems 127

4. RESULTS

We used an isolated and standalone network for our
test to eliminate unwanted network traffic. For our
experiments we connected a 466 MHz, Intel Celeron
128MB PC running Dummynet to a MiniWeb board
[7] through a dedicated 10 Megabit/second Ethernet
network. The MiniWeb board has three different
versions that are an embedded system equipped with a
RealTek RTL8019AS Ethernet controller. The
hardware details for each of the MiniWeb boards are
as follows:

1) TS80C32 CPU, 11.0592 MHz, 256Byte RAM,
64K Byte EPROM, no Operating System

2) Atmel Atmegal28 AVR microcontroller, 11.0592
MHz, 32 KBytes RAM, 128 KBytes ROM,
MicroC/OS

3) Intel386Ex CPU, 33.0 MHz, 128 KByte RAM,
IMByte FlashROM under MicroC/OS

We can build a TCP/IP Protocol Test system using
an embedded target. Fig. 3 describes the setup
configuration. By loading Dummynet [12] on the host
PC, we can easily run a simple network simulator.

Fundamental to TCP's time-out and retransmission
is the measurement of the round-trip time experienced
on a given connection. We expect this can transform
over time, as routes might alter and as network traffic
changes. TCP should track these changes and modify
its time-out accordingly [15].

The host PC with IP address 192.168.0.55 sends the
ping packets to the MiniWeb target. The target board
with 1P address 192.168.0.51 replies to the ICMP ping
request from the host. We measured RTT using
Dummynet, where ICMP packet data is 64bytes and
packet is repeated 300 times (i.e., ping —c 300 —s 64
192.168.0..51). For Dummynet, we utilized a
PicoBSD system version with FreeBSD. Table 5
presents the results. RTT for 8032 microcontroller
appears slower because the microcontroller uses
external RAM, where it has smaller internal RAM less
than 1 packet size.

_ The mIPI with one global data buffer does not need

to copy data between the TCP/IP stacks. Also, there is
no context switch between the TCP/IP stacks for an
event based operation. The TCP/IP processing is

182.168.0.55 162 168.0.51
host under Dummynet | | Target Miniweb board

Fig. 3. Test system configuration.

dominated by the copying of data from the network
device to host memory, and checksum calculation.
Table 6 summarizes the features for the embedded
TCP/IP implementation.

The ping utility can be useful for testing whether
TCP/IP is installed and configured properly. If this
works, it indicates that the computer is able to route
packets to itself. This is reasonable assurance that the
IP layer is setup correctly. You could also ask
someone else running TCP/IP for their IP address and
try pinging them.

The correctness for the embedded miP is verified
using the CommView software [14] of TamoSoft Inc.
Some state transitions during TCP connection are also
observed correctly. Fig. 4 shows an example for the
verification for the TCP protocol correctness.

Memory usage depends heavily on the applications
of the particular device in which the implementations
are to be run. It is possible to run the mIP with as little
as 200 bytes of RAM, but such a configuration will
provide extremely low throughput. The 1165 bytes of
additional on-chip memory for the 8032 microcontrol-
ler is required as external data memory.

Table 5. Test results for RTT measurements.

RTT 80C32 Atmegal28|Intel386Ex| Pentium 4
(ms) (MicroC) | (MicroC) (Windows XP)
min/ | 67.76/ 6.97/ 1.26/ 0.39/
avg/ | 7035/ | 3243/ 11.31/ 0.51/
max/ | 72.86/ | 67.83/ 24.81/ 0.71/

std 1.45 14.72 5.78 0.08

(Here, Intel Pentium 4 with 1.8GHz, 512 MByte
RAM is under Microsoft Windows XP)

Table 6. TCP/IP features implemented by mlIP.

Features mlIP
Network Driver 0
ARP o
IP fragment reassembly X
P IP options X
IP checksum 0
Multiple interfaces x(no need)
ICMP 0
UDP 0
UDP checksum 0
Multiple connections X
TCP options X
Variable TCP MSS X
TCP | TCP checksum o
RTT estimation X
TCP flow control o
Congestion control x(no need)
Out-of-sequence data X
TCP urgent data x(no need)
HTTP 0

128

Dx0000 52 46 54 41 47 31 00 0G-E8 S0 7C 8A 08 00 4500 RFTAG1..OIO.E.
0x0010 00 31 421900 00 80 11-76 9C C0O A8 00 83 C0O A58 ,1B..0.vEDOZU
0x0020 0033 05 E4 00 37 G2 1[~-73 8C 0A 0D 20 54 68 69 3. D <4, Thi
0x0030 73 20 69 73 20 55 44 50-20 74 65 73 74 3A 31 s is UDP test1

. Destination MAC: 52:46:54:41:47:31

Source MAC: 00:00:E8:50:7C:8A
Ethertype: 0x0800 {2048) - IP
Direction: Pass-through
Time / Delta Time: 01:25:40,250 / 125,610
Frame size' 63 bytes
Frame number: 78079
% P
= UDP
Source port: 1508
Destination port: 7
Length: 0x001D (29)
Checksum: 0x789C (30876} - correct

Fig. 4. TCP/IP state transition by CommView.

Table 7. Memory usage for mIP.

Size (bytes) Size (bytes) | Size (bytes)
(for 8032) | (Atmega 128) (80386)
Functions DATA DATA DATA
CODE (RAM) CODE (RAM) CODE (RAM)
Checksum,
1P, ICMP, Internal
UDP, ARP, =200
Network 5260 External 3759 | 1142 | 4581 | 1081
Driver, =1165
HTTP

Because the protocol implementations in mlIP are
tightly coupled, the individual sizes of the
implementations are not calculated. The code for each
of the three platforms was compiled using IAR
ICC8051, CodeVisionAVR, and Borland BCC,
respectively. Table 7 summarizes the code size for the
implementations.

Finally, operation of the embedded RF tag reader is
shown by a web browser in Fig. 5. A tag ID reading

through the web based tag reader is shown as SW3437.

Fig. 6 presents the web based RF tag reader developed
by our research lab.

5. CONCLUSIONS

We have implemented the simplified TCP/IP stack,
which can support a web-based control system, by
using a global common data buffer model for each of
the network layers, and have shown that it is possible
to implement TCP/IP protocol suite within 8 or 32-bit
CPU. We have studied how the code size and RAM
usage of a TCP/IP implementation can be reduced and
how some TCP/IP mechanisms can be sacrificed.
Finally, we have indicated that the web based RF tag
reader applications can communicate without any
interoperability problems over the Internet.

The main contribution of our work is to implement
any subset of TCP/IP stacks that is small enough in
terms of code size and memory with only a few
kilobytes of RAM based on the 8032, Atmegal28,
and 80386 processors. We may need additional
memory for the full TCP/IP stack.

Sugoog Shon

3 Unlvsrsity:of Suwon Minl=Wet Sotver- Microsolt internet Explorer,

QoD BRE 2N EHRFNE =D EEHFW
[LR T SR TR . =

&} htp:/7192.168,0.51/webcotrol ?send=READ

University of Suwon RF Tag Reader

Tag Information

Access 25hits '
RF ID Sw3437

READ} Tag ID Read

Fig. 5. Web based RF tag reader.

Fig. 6. Web based RF tag reader.

(1]

(2]

[3]

[4]

[5]
[6]

(11]

REFERENCES
R. Braden, Requirements for Internet Hosts -
Communication Layers, RFC 1122, Internet
Engineering Task Force, October 1989.
J. Bentham, TCP/IP Lean: Web Servers for
Embedded Systems, CMP Books, October 2002.
A. Dunkels, “Full TCP/IP for 8-bit architecture,”
Proc. of the First International Conference on
Mobile Systems, Applications and Services, San
Francisco, May 2003.
H. Shrikumar. “IPic - a match head sized web
server,” http://www-ccs.cs.umass.edu/~shri/iPic.
html.
Atmel Corporation, “Embedded web server.
AVR 460,” http://www.atmel.com, January 2001.
D. D. Clark, J. Romkey, V. Jacobson, H. Salwen,
“An analysis of TCP processing overhead,”
IEEE Communications Magazine, vol. 27, no. 6,
pp- 23-29, June 1989.
S. Shon, MiniWeb Ethernet Kit,
system Lab., University of Suwon.
A. Dunkels, “ulP - a TCP/IP stack for 8- and 16-
bit microcontrollers,” http:/dunkels.com/adam/uip/.
B. A. Forouzan, TCP/IP Protocol Suite,
McGraw-Hill International, pp. 297-299, 2000.
J. Kay and J. Pasquale, “The importance of non-
data touching processing overheads in TCP/IP,”
Proc. of the ACM SIGCOMM '93 Symposium, pp.
259-268, September 1993.
C. Partridge, J. Hughes, and J. Stone, “Perfor-
mance of checksums and CRCs over real data,”

Embedded

Protocol Implementations for Web Based Control Systems 129

Proc. of ACM SIGCOMM '95, pp. 68-76, 1995.

[12] L. Rizzo, “Dummynet: a simple approach to the
evaluation of network protocols,” ACM
Computer Communication Review, vol. 27, no. 1,
pp. 31-41, 1997.

[13] A. Rijsinghani, Computation of the Internet
Checksum via Incremental Update, RFC 1624,
Internet Engineering Task Force, May 1994.

[14] TamoSoft inc. CommView®, http://www.tamos.
com/products/commview/.

[15] P. Karn and C. Partridge, “Improving round-trip
time estimates in reliablie transport protocols,”
Proc. of the SIGCOMM '87 Conference, Stowe,
Vermont, August 1987.

Sugoog Shon received the Ph.D.
degree in Electrical and Computer
Engineering from the University of
Texas, Austin in 1996. His research
interests are embedded systems and
their applications.

