DOI QR코드

DOI QR Code

Superparamagnetic Properties of Nanoparticles Ni0.9Zn0.1Fe2O4 for Biomedical Applications

  • Published : 2005.03.01

Abstract

Nanoparticles $Ni_{0.9}Zn_{0.1}Fe_2O_4$ is fabricated by a sol-gel method. The magnetic and structural properties of powders were investigated with XRD, SEM, Mossbauer spectroscopy, and VSM. $Ni_{0.9}Zn_{0.1}Fe_2O_4$ powders annealed at $300{^{\circ}C}$ have a spinel structure and behaved superparamagnetically. The estimated size of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 10 nm. The hyperfine fields at 13 K for the A and B patterns are found to be 533 and 507 kOe, respectively. The ZFC curves are rounded at the blocking temperature ($T_B$)and show a paramagnetic-like behavior above $T_B$. $T_B$ of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ nanoparticle is about 250 K. Nanoparticles $Ni_{0.9}Zn_{0.1}Fe_2O_4$ annealed at 400 and $500{^{\circ}C}$ have a typical spinel structure and is ferrimagnetic in nature. The isomer shifts indicate that the iron ions were ferric at the tetrahedral (A) and the octahedral (B). The saturation magnetization of nanoparticles $Ni_{0.9}Zn_{0.1}Fe_2O_4$ annealed at 400 and $500{^{\circ}C}$ are 40 and 43 emu/g, respectively. The magnetic anisotropy constant of $Ni_{0.9}Zn_{0.1}Fe_2O_4$ annealed at $300{^{\circ}C}$ were calculated to be 1.6 ${\times}$ $10^6$ ergs/$cm^3$.

Keywords

References

  1. Adam J. Rondinone, Anna C. S. Samia, and Z. J. Zhang, Appl. Phys. Lett., 76(24), 3624 (2000)
  2. S. W. Lee, K. W. Woo, C. S. Kim, J. of Magnetics 9(3), 83 (2004)
  3. Perdo Tartaj, Maria del Puerto Morales, Sabino Veintemillas-Veraguer and Carlos J Serna. J. Phys. D: Appl. Phys., 36 R182 (2003)
  4. S. H. Im, T. Herricks, Y. T. Lee, Y. Xia, Chem. Phys. Lett., 401, 19 (2005)
  5. S. K. Khanna and S. Linderoth, Phys. Rev. Lett. 67, 742 (1991) https://doi.org/10.1103/PhysRevLett.67.991
  6. Qi Chen and Z. J. Zhang, Appl. Phys. Lett. 73, 3156 (1998)
  7. S. W. Lee, Y. G. Ryu, K. J. Yang, K. D. Jung, S. Y. An, and C. S. Kim, J. Appl. Phys., 91(10), 610 (2002)
  8. J. G. Lee, H. M. Lee, C. S. Kim, and Y. J. Oh, J. Magn. Magn. Mater. 177-181, 900 (1998) https://doi.org/10.1016/S0304-8853(97)00925-6
  9. V. K. Sankaranarayana, Q. A. Pankhurst, D. P. Dickson, and C. E. Johnson, J. Magn. Magn. Mater. 125, 199 (1998)
  10. S. J. Kim, K. D. Jung, and C. S. Kim, Hyperfine Inter­actions 156, 113 (2004)
  11. C. Caizer, Mater. Science and Eng. B 100, 63 (2003)
  12. B. K. Nath, P. K. Chakrabarti, S. Das, U. Kumar, P. K. Mukhopadhyay, and D. Das, Eur. Phys. B 39, 417 (2004)
  13. Sufi R. Ahmed, S. B. Ogale, Georgia C. Papaefthymiou, Ramamoorthy Ramesh, and Peter Kofinas, Appl. Phys. Lett. 80(9), 1616 (2002)
  14. S. W. Lee, S.Y. Yoon, S. Y. An, W. C. Kim, and C. S. Kim, J. of Magnetics 4(4), 115 (1999)
  15. H. N. Ok, K. S. Baek, H. S. Lee, and C. S. Kim, Phys. Rev. B 41, 62 (1990)
  16. S. Chikazumi, Physics of Ferromagnetism, 2nd ed. (Oxford University Press, New York, 1997), p. 510

Cited by

  1. MÖssbauer Studies of Superparamagnetic Ni$_{0.5}$Zn$_{0.5}$Fe$_{2}$O$_{4}$ Nanoparticles vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018608
  2. Structure and Magnetic Properties of Carbon-Encapsulated Ni Nanoparticles vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018609
  3. A Study on the Magnetic Properties of Al-Doped Sulphur Spinel vol.46, pp.2, 2010, https://doi.org/10.1109/TMAG.2009.2038353
  4. Annealing effects on the crystal growth and the magnetic properties of Mn0.8Zn0.1Ni0.1Fe2O4 ferrite powder grown by using the sol-gel method vol.60, pp.5, 2012, https://doi.org/10.3938/jkps.60.795
  5. Structural and magnetic properties of nanoparticle Mn-Zn-Ni ferrite powders grown by using a sol-gel method vol.61, pp.11, 2012, https://doi.org/10.3938/jkps.61.1812
  6. Crystallographic and Magnetic Properties of Nickel Substituted Manganese Ferrites Synthesized by Sol-gel Method vol.18, pp.1, 2013, https://doi.org/10.4283/JMAG.2013.18.1.021
  7. nanoparticles vol.204, pp.12, 2007, https://doi.org/10.1002/pssa.200777265