광, 온도, 수분 변화에 따른 음나무 엽의 생리반응(I) - 광도변화에 따른 광합성과 호흡 특성 -

Effects of Light, Temperature, Water Changes on Physiological Responses of Kalopanax pictus Leaves(I) - Characteristics of Photosynthesis and Respiration of Leaves by the Light Intensity -

  • 한상섭 (강원대학교 산림과학대학 산림자원학부) ;
  • 전두식 (강원도산림개발연구원) ;
  • 심주석 (강원도 자연연구공원)
  • Han, Sang-Sup (Division of Forest Resources, College of Forest Sciences, Kangwon National University) ;
  • Jeon, Doo-Sik (Forest Research Institute of Gangwon Province) ;
  • Sim, Joo-Suk (Research Institute of Gangwon Province Natural Park)
  • 발행 : 2005.06.30

초록

음나무 엽의 생리반응 특성을 구명하기위하여 광도별 광합성속도, 그리고 호흡속도를 측정한 결과를 요약하면 다음과 같다. 1. 음나무의 광보상점은 상엽 ($34{\mu}mol\;m^{-2}S^{-1}$) > 중엽($29{\mu}mol\;m^{-2}S^{-1}$) > 하엽 ($25{\mu}mol\;m^{-2}S^{-1}$) 순위였고, 광포화점은 상엽이 $800{\sim}1,200{\mu}mol\;m^{-2}S^{-1}$, 중엽과 하엽이 $400{\mu}mol\;m^{-2}S^{-1}$이였다. 광포화시 순광합성속도의 크기는 상엽($11.1{\mu}mol\;CO_2\;m^{-2}S^{-1}$) > 중엽 ($5.15{\mu}mol\;CO_2\;m^{-2}S^{-1}$) > 하엽 ($4.01{\mu}mol\;CO_2\;m^{-2}S^{-1}$) 순위였다. 광양자이용효율은 하엽($0.041{\mu}mol\;CO_2\;{\mu}mol^{-1}$). 중엽($0.040{\mu}mol\;CO_2\;{\mu}mol^{-1}$). 하엽($0.039{\mu}mol\;CO_2\;{\mu}mol^{-1}$) 순위였다. 2. 상엽의 기공전도도는 광도의 증가와 함께 계속적으로 증가한 반면, 중엽과 하엽은 광도 $400{\mu}mol\;m^{-2}S^{-1}$부터 더 이상 증가하지 않았다. 3 엽육세포간극의 $CO_2$농도/대기중 $CO_2$농도($C_i/C_a$) 비율은 상엽, 중엽, 하엽 모두에서 광도 $600{\mu}mol\;m^{-2}S^{-1}$까지 감소하였고, 그 이상의 광도에선 큰 변화를 보이지 않았다. 4. 상엽의 광호흡속도는 약 $3.34{\mu}mol\;CO_2\;m^{-2}S^{-1}$이였고, $CO_2$ 보상점은 $48.7{\mu}mol\;mol^{-1}$이었다. 암호흡속도는 옹도의 증가와 함께 지수함수적으로 증가하였으며, 광호흡속도는 암호흡속도의 약 2.4배 정도였다.

This research was carried out to elucidate the photosnthesis, respiration, and intercellullar $CO_2$ concentration of Kalopanax pictus leaves. The results obtained are summarized as follows; 1. The light compensation points in leaves of Kalopanax pictus seedlings were in the following order; the upper ($34{\mu}mol\;m^{-2}s^{-1}$) middle ($29{\mu}mol\;m^{-2}s^{-1}$) lower leaves ($24{\mu}mol\;m^{-2}s^{-1}$). The light saturated points were at $800{\sim}1200{\mu}mol\;m^{-2}s^{-1}$ in the upper leaves and $400{\mu}mol\;m^{-2}s^{-1}$ in the middle and lower leaves. At the light saturated points, the net photosynthesis rate was in the following order; the upper ($11.1{\mu}mol\;CO_2\;m^{-2}s^{-1}$) middle ($5.15{\mu}mol\;CO_2\;m^{-2}s^{-1}$) lower leaves ($4.01{\mu}mol\;CO_2\;m^{-2}s^{-1}$). The light use efficiency was in the following order; the upper ($0.041{\mu}mol\;CO_2\;{\mu}mol^{-1}$) middle ($0.040{\mu}mol\;CO_2\;{\mu}mol^{-1}$) lower leaves ($0.039{\mu}mol\;CO_2\;{\mu}mol^{-1}$). 2. In the upper leaves of Kalopanax pictus seedlings, the stomatal conductance increased continuously with increasing light intensity. In the middle and lower leaves, it was saturated at $400{\mu}mol\;m^{-2}s^{-1}$. 3. In the upper, middle and lower leaves of Kalopanax pictus seedlings, the intercellular $CO_2$ concentration/the atmospheric $CO_2$ concentration ($C_i/C_a$) ratio rapidly decreased to $600{\mu}mol\;m^{-2}s^{-1}$, and then showed a constant values. 4. In the upper leaves of Kalopanax pictus seedlings, the photorespiration rate was $3.34{\mu}mol\;CO_2\;m^{-2}s^{-1}$ and $CO_2$ compensation point was $48.7{\mu}mol\;mol^{-1}$. Dark respiration rate increased exponentially with increasing leaf temperature, and the photorespiration rate was 2.4 times higher than dark respiration rate.

키워드