Decoding Performance of Quasi-Orthogonal Space Time Block Code Using Optimal Transmit Power Allocation

Kwang don Choe*, Bong joon Kim**, Young ha Cho***, Sang kyu Park**** Regular Members

Abstract

The space time block code (STBC) can not provide simultaneously both full diversity and full transmission rate in a transmit diversity system having more than two transmit antennas. There are a quasi orthogonal STBC for four transmit antennas that provides full transmission rate and minimized interference. Recently, a simple correlation canceling algorithm is introduced to achieve full diversity from STBC considering four transmit antennas. In this paper, we propose a new decoding procedure using the power allocation at the transmitter and subtraction interference process at the receiver to achieve a better performance without noise enhancement.

I. 서론

다만 다이버시티 이득을 얻기 위해서 송신안테나가 4개인 다중 송신 안테나 시스템에 대해 직교적 입자 공간블록부호가 Jafarkhani에 의해서 제안되었다[12]. 또한 최근에는 간단한 연산으로 및 직교성으로 인한 간섭을 제거할 수 있는 단순산란체계가 알고리즘을 Hou가 제안하였다[13]. 그러나 단순산란체계
관제지 알고리즘이 여러 준직교성으로 인한 간섭을 제거하는 과정에서 배경잡음의 영역을 증가시키는 단점을 갖고 있다.

본 논문에서는 이러한 단점을 개선하기 위해 4개의 송신안테나와 환경의 다중 송신 시스템을 고려한 Jafarkhani 시공간 블록부호에 관한 Jafarkhani 기법을 사용하였다. Jafarkhani 기법은 최대 전송률을 제공하는 반면, 준직교성에 의한 간섭 발생으로 최대 디바이저 이득을 얻을 수 없다. 그림 1은 Jafarkhani 기법을 사용한 블록도이다.

주어진 심별 주기에서 4개의 신호가 4개의 송신 안테나를 통해 동시에 전송된다. 표 1은 4개의 심
별주기 동안 4개의 송신 신호를 통해 부호화되어 전송되는 부호를 송신안테나와 동시에 전송된 시간에
따라 나타났다.

표 1. 4개의 송신 안테나를 위한 부호화와 전송시각

<table>
<thead>
<tr>
<th>안테나</th>
<th>시간</th>
<th>t</th>
<th>t+T</th>
<th>t+2T</th>
<th>t+3T</th>
</tr>
</thead>
<tbody>
<tr>
<td>수신안테나1</td>
<td>s1</td>
<td>s1</td>
<td>s1</td>
<td>s4</td>
<td></td>
</tr>
<tr>
<td>수신안테나2</td>
<td>s2</td>
<td>s2</td>
<td>s2</td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>수신안테나3</td>
<td>s3</td>
<td>s3</td>
<td>s3</td>
<td>s6</td>
<td></td>
</tr>
<tr>
<td>수신안테나4</td>
<td>s4</td>
<td>s4</td>
<td>s4</td>
<td>s1</td>
<td></td>
</tr>
</tbody>
</table>

표 1에서 T는 심별 주기이며 s1,...,s4는 4개의 심별 주기 동안, 즉, t,Kt, k=0,…,3에서 전송되는
서로 다른 심별을 나타낸다. 또한 s는 s의 결과에

\[h_n(t) = h_n(t+Kt) = h_n = a_s e^{j2\pi} \quad m=1,\ldots,4, \quad k=0,\ldots,3 \]

(1)

신호 s1,...,s4가 4개의 심별 주기 동안 패이딩 채널을 통해서 전송되는 과정을, 표 1에 표현된 신호를 특성을 이용해 부호화를 해서, 심 (1)에서의 채널들의 특성을 이용한 부호화 과정으로 나타낼 수 있다. 이 과정을 4x4 전송 행렬을 \(H \)으로 나타내고, 4개의 주기를 동안 전송되는 심볼 s1,...,s4로 이뤄진 벡터를 \(S \)라고 했을 때, 4개의 주기를 동안 심볼들이 전송되는 과정을 다음과 같은 행렬식으로 표현 할 수 있다:

\[HS = \begin{pmatrix} h_1 & h_2 & h_3 & h_4 & h_5 & h_6 & h_7 & h_8 \\ -h_1 & h_2 & -h_3 & h_4 & h_5 & h_6 & -h_7 & -h_8 \\ -h_1 & -h_2 & h_3 & -h_4 & h_5 & -h_6 & h_7 & -h_8 \\ h_1 & -h_2 & -h_3 & h_4 & -h_5 & h_6 & -h_7 & h_8 \end{pmatrix} \]

(2)

그림 1. Jafarkhani 기법을 이용한 전송 디바이저 시스템
수신단에서 4개의 심별 주기 동안 배경잡음이 포함되어 수신된 신호 둘러싸는 R이라고 했을 때 다음과 같이 표현될 수 있다.

\[
R = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

(3)

여기서 베터 R과 N의 각 행은 시간 t+kt, k=0,1,2,3에서의 수신된 신호와 배경잡음의 각각 나타내고, N은 가우시안 잡음이다.

수신단의 채널 추정이 완벽하다고 가정했을 때 채널 검출기에서 검출된 채널 정보를 이용하여 복호화된 신호를 S라고 했을 때 다음과 같은 행렬식으로 표현할 수 있다.

\[
S = H^H R = H^H HS + H^H N
\]

(4)

식 (4)와 같이 복호화된 신호 S는 최대우도 검출기의 입력 값이 된다. 식 (4)에서, \(H^H\)은 행렬 H의 허미시아 변형(Hermitean transform)이며, \(H^H H\)는 다음과 같이 표현할 수 있다.

\[
H^H H = \begin{pmatrix}
a & 0 & 0 & b \\
a & 0 & 0 & b \\
0 & b & 0 & 0 \\
0 & b & 0 & 0 \\
\end{pmatrix}
\]

(5)

여기서 a는 결합기를 거친 수신된 신호들의 다이버시티에 의한 채널 이득 값이며, b는 즉정교성에 의해 발생하는 상호 상관계수들의 합이며, 즉정교성으로 인한 간섭을 일으키고 최대 다이버시티 이득을 얻지 못하게 하는 원인이 된다. a, b는 다음 식과 같이 나타낼 수 있다.

\[
a = \sum_{i=1}^{m} |c_i|^2 \rho_i^2 + \alpha_1^2 + \alpha_2^2
\]

\[
b = h_i h_i^* + h_i h_i^* - h_i h_i^* - h_i h_i^*
\]

(6)

식 (6)을 이용하여 복호화된 신호 S를 다음과 같이 표현할 수 있다.

\[
S = \begin{pmatrix}
\alpha_1 + b s_1 \\
\alpha_2 - b s_2 \\
\alpha_3 - b s_3 \\
\alpha_4 + b s_4
\end{pmatrix} + H^H N
\]

(7)

수신단에서 적용되는 최대우도 결정 방법은 다음 조건을 만족할 때만 신호 \(s_i\)를 선택한다.

\[
d^2(r, h s_i) + d^2(r, h s_j) = d^2(r, s_k) + d^2(r, h s_k) \forall k \neq i
\]

(8)

III. 단순상관제거기법

Jafarkhani 기법의 결정적인 단점인 즉정교성으로 인한 간섭 성분은 최대 다이버시티 이득을 얻지 못하게 한다. 이러한 단점을 극복하기 위한 기법으로 단순상관제거 알고리즘이 있다[4].

식 (5)와 (7)의 행렬 \(H^H H\)에서 즉정교성으로 인한 간섭을 없애는 상호 상관계수 함 b를 제거해 야 즉정교성으로 인한 간섭이 제거되며 최대 검증률과 최대 다이버시티 이득을 동시에 얻을 수 있다. 상호 상관계수의 함 b를 제거하기 위해 기존의 복호화 후 행렬 \(H^H H\)에 곱해지는 상관제거 행렬을 D라고 한다면 즉정교성으로 인한 간섭을 제거하는 과정을 다음과 같은 식으로 표현할 수 있다[4].

\[
DH^H H = \begin{pmatrix}
a & 0 & 0 & b \\
0 & a & b & 0 \\
0 & b & a & 0 \\
b & 0 & 0 & a \\
\end{pmatrix} = \begin{pmatrix}
a & 0 & 0 & 0 \\
0 & a & 0 & 0 \\
0 & 0 & a & 0 \\
0 & 0 & 0 & a \\
\end{pmatrix}
\]

(9)

여기서 I는 4 x 4 identity matrix를 나타낸다.

식 (9)로부터 상관제거 행렬 D를 아래와 같이 구할 수 있다.

\[
D = a(H^H H)^{-1} = \begin{pmatrix}
1 & 0 & 0 & B \\
0 & 1 & -B & 0 \\
0 & -B & 1 & 0 \\
B & 0 & 0 & 1 \\
\end{pmatrix}
\]

(10)

여기서 \(A = 1 - \frac{b^2}{a^2}\), \(B = -\frac{b}{a}\) 이다.

간섭제거 행렬 D를 기준 복호화 과정을 거친 신호 S에 곱하면 간섭이 제거된 신호 \(S'\)을 얻을 수.
두 그룹으로 나누고, 그룹별로 송신 전력을 다르게 할당한다. 그리고 한 심별 주기가 동안 송신되는 심별
들의 총 전력은 변화하지 않는다고 가정한다. 한 심별 주기 동안 각 심별에 할당되는 전력은 다음과 같
이 나타낼 수 있다.

\[|a_1|^2 = |a_2|^2 = \frac{\rho}{2} \]
\[|a_3|^2 = |a_4|^2 = \frac{\rho}{2} \]

여기서 \(\rho \)는 한 심별주기 동안 전송되는 \(s_1, s_2 \)와
\(s_3, s_4 \)간의 전력비를 나타낸다.

2단계(간섭제거) : 식 (7)에 의해서 복호화된 신호 벡터 \(\hat{s} \)의 각 성분은 다음과 같이 표현할 수 있다.

\(s_1 \) 검출에 사용되는 성분 \(a_1 + b_1 + H_N^1 \)
\(s_2 \) 검출에 사용되는 성분 \(a_2 - b_2 + H_N^2 \)
\(s_3 \) 검출에 사용되는 성분 \(a_3 - b_3 + H_N^3 \)
\(s_4 \) 검출에 사용되는 성분 \(a_4 + b_4 + H_N^4 \)

여기서 \(H_N^k \)은 \(H_N \)의 \(k \)번째 행을 가리킨다.

만약 \(\beta > 1 \)라면 \(s_1, s_2 \)을 검출하는데 존재하는 각
각의 준직교성으로 인한 간섭성분 \(b_1, b_2 \)는 기존
의 Jafarkhani 기법과 비교하여 \(s_3, s_4 \)신호에 할당
된 전력이 작아지고, 신호성분 \(a_1, a_2 \)에 더 적
은 영향을 미친다. 반대로 신호성분 \(a_3, a_4 \)은 기존
의 Jafarkhani 기법에서 각 신호 \(s_3, s_4 \)에 할당
된 전력보다 크게 송신되기 때문에 더 낮은 비트
오헤로로 신호 \(s_3, s_4 \)을 검출할 수 있다.

\(s_1, s_2 \)가 \(s_3, s_4 \)보다 높은 송신 전력으로 송신
했기 때문에 기존의 Jafarkhani 기법보다 정확하게
검출된 신호 \(s_1, s_2 \)을 알고 있으므로 \(s_3, s_4 \)에 영
향을 미치는 각각의 준직교성으로 인한 간섭성분
\(b_3, b_4 \)가 획득할 수 있다. 간섭을 제거할 때 신
관련신을 통해서 신호를 제거하는 단순관련신과 각
고리즈가 아닌 간단한 평균 연산을 통해서 줄자고
성으로 인한 간섭을 제거하기 때문에 잡음 증가 현
상 없이 \(s_3, s_4 \)를 검출할 수 있다.
V. 시뮬레이션 및 성능분석

본 장에서는 송신안테나가 4개이고 수신안테나가 1개인 송신다이버시티 시스템을 고려한 Jafarkhani 기법과 Jafarkhani 기법에 단순상관제거 알고리즘을 적용한 시스템과 본 논문에서 제안한 송신전력할당 기법을 적용한 시스템의 성능을 비교, 분석한다. 또한 신호 대 잡음 비에 따른 전력할당 비율의 최적 값을 시뮬레이션을 통해 알아보고 전력할당 비율을 고정한 경우와 성능을 비교, 분석한다. 변조방식은 QPSK이며, 한 설별주기에 동안 송신안테나 수에 관계없이 총 송신 전력은 일정하다고 가정하고 수신 신호의 신호대잡음비 (Signal to Noise Ratio: SNR)는 다음과 같이 정의한다.

\[SNR = \frac{\rho^2 |H_j|^2 E[|s_j|^2]}{M_T \sigma^2}, \quad j = 1, \ldots, M_T \]

여기서 \(E[|s_j|^2] \)는 한 설별 주기 동안 하나의 송신 안테나로 전송되는 신호의 평균전력을 나타내며, \(M_T \)는 송신안테나의 수를 나타낸다.

그림 2는 Jafarkhani 기법에 단순 상관제거 알고리즘을 적용한 시스템과 적용하지 않은 시스템을 비교한 것이다. \(10^{-2} \)의 비트 오류율을 만족하기 위해서는 단순상관 알고리즘으로 간섭을 제거한 경우가 제거하지 않은 경우보다 약 5dB 정도의 신호대잡음비의 이득을 얻을 수 있다.

또한 Jafarkhani 기법에 송신전력할당과 단순상관 제거 알고리즘을 적용한 경우를 각각 비교해 보면 \(10^{-3} \)의 비트 오류율을 만족하기 위해서 송신전력 할당을 사용한 경우가 단순상관제거 알고리즘을 사용한 경우보다 약 1dB의 신호대잡음비의 이득을 얻을 수 있다.

Jafarkhani 기법에 전력할당 기법이나 단순상관제거 알고리즘을 적용할 경우 간섭을 제거해 보다 높은 다이버시티 이득을 얻을 수 때문이다.

그림 3은 0-10dB의 신호대잡음비에서 전력할당에 따른 비트 오류율을 분석한 그림이며, \(\beta \)값이 2-3 정도인 때 가장 낮은 비트 오류율을 보여주고 있다.

그림 4는 그림 3을 통해 분석한 구간별 신호 대 잡음 비에 따른 송신전력 할당의 최적 비율 \(\beta \)를 적용한 경우와 \(\beta = 1.5, \beta = 5 \)로 각각 송신전력 할당 비율을 맞춘 경우와 비교한 그림이다. 신호 대 잡음 비가 0-3dB에서는 \(\beta = 2.3 \) 정도인 때, 신호 대 잡음 비가 3-10dB에서는 \(\beta = 2.7 \) 정도인 때, 그리고 10-12dB에서는 \(\beta = 3 \) 정도인 때 가장 낮은 비트 오류율을 보여주고 있다.

![그림 2: Jafarkhani 기법, Jafarkhani 기법에 단순상관제거 알고리즘과 송신전력할당을 각각 적용시킨 경우의 비트 오류율 (\(\beta = 2.7 \))](attachment:fig2.png)

![그림 3: 신호대잡음비 0-10 dB 구간에서의 송신전력할당을 이용한 Jafarkhani 기법의 전력할당 비율에 따른 비트 오류율](attachment:fig3.png)

![그림 4: 신호대잡음비 구간별 전송전력비의 최적값을 적용시킨 경우의 비트 오류율](attachment:fig4.png)
논문/최적 송신전력 함당을 이용한 준직교성 시공간 분석의 광역화 성능

VI. 결론

본 논문에서는 송신안테나 4개를 고려한 준직교성 시공간 분석을 통해 블록보수를 사용한 송신안테나 다이버시티 시스템에서 수신신호의 존재성으로 인한 간섭 성분을 제거하고, 또한 점검의 전력감 을 없애는 기법을 소개하였다. 이 기법은 간섭을 제거하고 주기 때문에 준직교성 시공간 분석로부터 최대 주파수와 최대 다이버시티 이득을 동시에 얻을 수 있도록 해 준다.

한 부호어를 구성하는 4개의 심볼을 두 쌍으로 나누어 송신전력을 다르게 할당하여 준직교성으로 인한 간섭을 제거하는 과정을 소개하였다. 높은 전력으로 송신된 신호는 낮은 전력으로 송신된 두 신호보다 늘은 신호의 점음비를 줄여서 다음에 이 신호성을 이용하여 낮은 전력으로 송신된 신호의 존재성으로 인한 간섭성성을 제거하기 때문에 낮은 전력으로 송신된 신호의 존재성으로 인한 간섭이 점검 전력의 증가 없이 제거된다.

또한 간단한 간섭제거기법을 사용하기 때문에 수신신호의 복잡도도 늘어지지 않는다. 따라서 송신전력 밖에 사용하여 단순 복잡화 과정보다 간단 한 연산을 통해서도 성능을 개선할 수 있다.

참고 문헌