Diagnosis and treatment in Charcot-Marie-Tooth disease

Sang-Beom Kim, M.D., Kee Duk Park, M.D., Byung-Ok Choi, M.D.

Department of Neurology, College of Medicine, Ewha Womans University

Charcot-Marie-Tooth (CMT) disease was described by Charcot and Marie in France and, independently, by Tooth in England in 1886. CMT is the most common form of inherited motor and sensory neuropathy, and is a genetically heterogeneous disorder of the peripheral nervous system. Therefore, many genes have been identified as CMT-causative genes. Traditionally, subclassification of CMT have been divided into autosomal dominant inherited demyelinating (CMT1) and axonal (CMT2) neuropathies, X-linked neuropathy (CMTX), and autosomal recessive inherited neuropathy (CMT4). Recently, intermediate type (CMT-Int) with NCVs between CMT1 and CMT2 is considered as a CMT type. There are several related peripheral neuropathies, such as Déjérine-Sottas neuropathy (DSN), congenital hypomyelination (CH), hereditary neuropathy with liability to pressure palsies (HNPP) and giant axonal neuropathy (GAN). Great advances have been made in understanding the molecular basis of CMT, and 17 distinct genetic causes of CMT have been identified. The number of newly discovered mutations and identified genetic loci is rapidly increasing, and this expanding list has proved challenging for physicians trying to keep up with the field. Identifying the genetic cause of inherited neuropathies is often important to determine at risk family members as well as diagnose the patient. In addition, the encouraging studies have been published on rational potential therapies for the CMT1A. Now, we develop a model of how the various genes may interact in the pathogenesis of CMT disorder.

Key Words: Charcot-Marie-Tooth disease, Peripheral nervous system, Schwann cell, Axonopathy, Gene

```
1,2
                                                                            Tooth
                                           가
                                                                                                            CMT
                                                               (syndrome)
                                              가
                                                                      가
                        (Charcot - Marie - Tooth dis -
                                                                       가
ease; CMT)
                1886
                                    Charcot Marie,
                                                             CMT
                                                                               가
                                                                                       CMT1,
Address for correspondence
                                                                                                 CMT2, X
                                                                                      가
Byung-Ok Choi, M.D.
                                                                                    CMTX,
Department of Neurology and Ewha Medical Research Center,
College of Medicine, Ewha Womans University, Dongdaemun Hospital,
                                                                                 CMT4
70 Jongno 6-ga, Jongno-gu, Seoul 110-783, Korea
                                                             CMT1
                                                                      CMT2
Tel: +82-2-760-5257 Fax: +82-2-760-5008
E-mail: bochoi@ewha.ac.kr
                                                                가
                                                                                    CMT (CMT-Int)
                                                                           CMT
                 .(A05-0503-A20718-05N1-00010A)
                                                                              Déjérine-Sottas neuropathy (DSN),
```

congenital hypomyelina-

(Table 1).5

CMT1A

tion (CH), hereditary neuropathy with liability to pressure palsies (HNPP), giant

NT-3 (Neurotrophin-3)

axonal neuropathy (GAN)가

(onapristone),

CMT

6-8

(ascorbic acid)

CMT

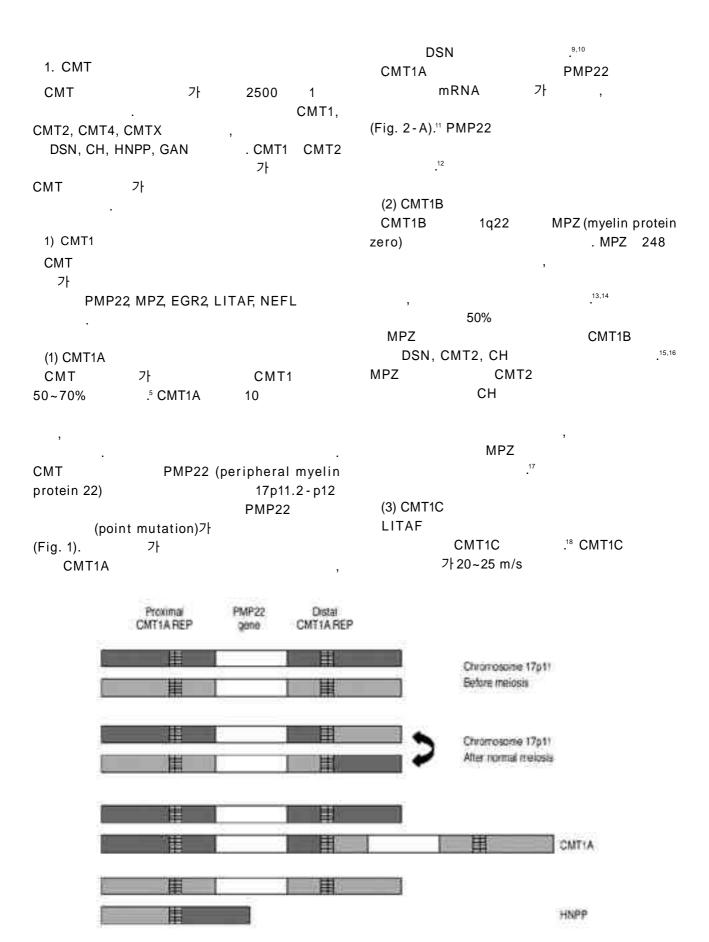
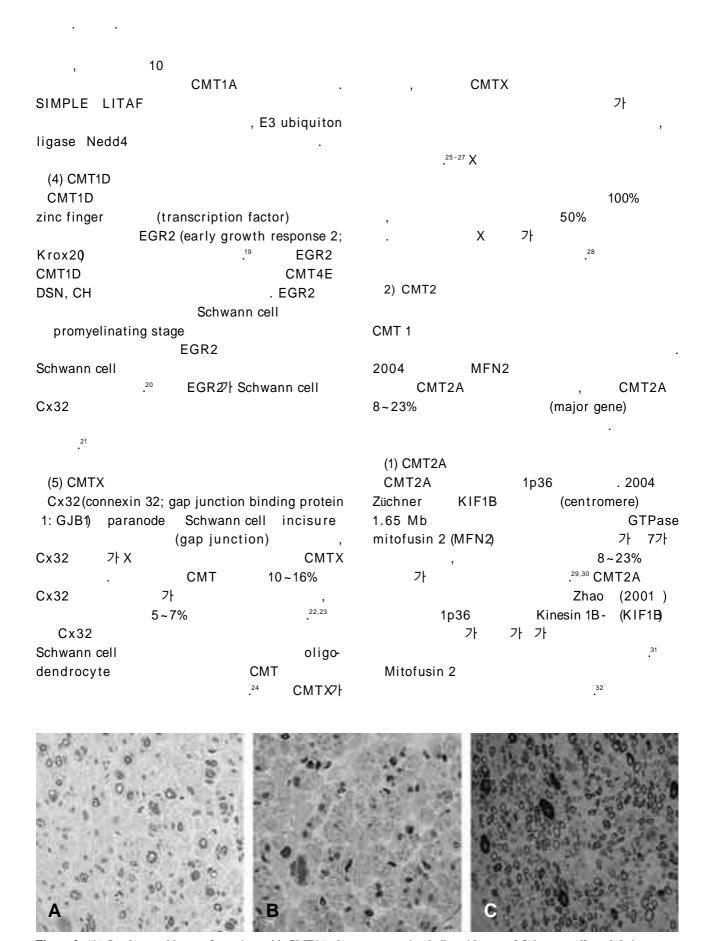

가 CMT

Table 1. Hereditary motor and sensory neuropathies classification


Type	Gene	Locus	Inheritance	Protein	Cellular localization	Mutation
CMT type 1						
CMT1A	PMP22	17p11.2-p12	AD	Peripheral myelin protein 22	Compact myelin	Duplication Point mutation
CMT1B	MPZ	1q22	AD	Myelin protein zero	Compact myelin	Point mutation
CMT1C	LITAF	16p13.1-p12.3	AD	SIMPLE		Point mutation
CMT1D	EGR2	10q21.1-q22.1	AD	Early growth response protein 2	Nucleus	Point mutation
CMTX	Cx32 (GJB1)	Xq13.1	XD	Gap junction beta-1 protein (connexin 32)	Non-compact myelin	Point mutation Deletion (rare)
CMT type 2	2					
CMT2A	MFN2	1p36	AD	Mitofusin 2	Mitochondrial GTPase	Point mutation
		•			(function axonal transport)	
	KIF1B	1p36	AD	Kinesin-like protein KIF1B	Microtubular transport	Point mutation
CMT2B	RAB7	3q21	AD	Ras-related protein Rab-7		Point mutation
CMT2C	Unknown	12q23-q24	AD	Unknown		
CMT2D	GARS	7p15	AD	Glycyl-tRNA synthetase		Point mutation
CMT2E	NEFL	8p21	AD	Neurofilament triplet L protein	Neurofilaments	Point mutation
CMT2F	HSP27	7q11-21	AD	Small heat shock protein 27		Point mutation
CMT type 4	ļ					
CMT4A	GDAP1	8q13-q21.1	AR	Ganglioside-induced differentiation protein-1		Point mutation
CMT4B1	MTMR2	11q22	AR	Myotubularin-related protein 2	Cytoplasm	Point mutation
4B2	SBF2	11p15	AR	SET binding factor 2	Cytoplasm	Point mutation
CMT4C	KIAA 1985	5q32	AR	Unknown		Point mutation
CMT4D	NDRG1	8q24.3	AR	n-myc downstream regulated gene 1 protein		
CMT4E	EGR2	10q21.1-q22.1	AR	Early growth response protein 2	Nucleus	Point mutation
CMT4F	PRX	19q13.1-q13.2	AR	Periaxin	Ab/Ad-axonal membrane	Point mutation
Related peri	ipheral neuropa	thy				
DSN	PMP22	17p11.2	AR	Peripheral myelin protein 22	Compact myelin	Point mutation
	MPZ	1q22	AR	Myelin protein zero	Compact myelin	Point mutation
	EGR2	10q21.1-q22.1	AR	Early growth response protein 2	Nucleus	Point mutation
	NEFL	8p21	AR	Neurofilament triplet L protein	Neurofilaments	Point mutation
	PRX	19q13.1-q13.2	AD	Periaxin	Ab/Ad-axonal membrane	Point mutation
CH	PMP22	17p11.2	AD	Peripheral myelin protein 22	Compact myelin	Point mutation
	MPZ	1q22	AD	Myelin protein zero	Compact myelin	Point mutation
	EGR2	10q21.1-q22.1	AD	Early growth response protein 2	Nucleus	Point mutation
HNPP	PMP22	17p11.2	AD	Peripheral myelin protein 22	Compact myelin Point mutation	Deletion
GAN	Gigaxonin	16q24.1	AR	Gigaxonin	Cytoskeleton	Point mutation

CMT; Charcot-Marie-Tooth disease, AD; autosomal dominant, AR; autosomal recessive, DSN; Déjérine-Sottas neuropathy, CH; congenital hypomyelination

HNPP; hereditary neuropathy with liability to pressure palsy, GAN; giant axonal neuropathy

Figure 1. CMT1A duplication and HNPP deletion are the reciprocal products of a recombination event (unequal crossing over) during meiosis mediated through the flanking repeat elements (CMT1A-REPs).

Figure 2. (A) Sural nerve biopsy of a patient with CMT1A shows many onion bulbs with several Schwann cells and their process around myelinated fibers (toluidine blue x 400). (B) The semithin section shows marked decreased myelinated nerve fibers of sural nerve in a patient with CMT2A (toluidine blue stain x 400). (C) Transverse section of sural nerve in a patient with hereditary neuropathy with liability to pressure palsies shows thickened myelin sheaths (toluidine blue x 400).

		CMT1	DSN		.40 •
가 가 . ³³		가 CM	가 T1	CMT2	NEFL ,
. ³⁴ MF CMT2A (Fig. 2-B). MFN2	N2	NEFL filament)	·		(neuro
MFN2	35		가 .'	⁴¹ NEFL	
(2) CMT2B CMT2B 3q21 RAB7	가	(6) CMT2F			.42
.36 RAB7 endosom cellular vesicle traffic . RAB7 RILP dynein-dynactin motor	e intræ G RAB	sHSPs (sm CMT2 hereditary m	otor neuropa SHSP		(distal
Dynactin	•	, apopt	.0515		44 Nature
(3) CMT2C CMT2C 12q23 - q24	(locus) 가	가 CI , ⁴³ Irobi	MT2F	Evgraf HSP27 C-terr dHMN (2)=sHSP22 2	ninal tail
	CMT2C	. 31101 22	. 3110121		
가	.38	3) CMT4		- -	
(4) CMT2D Glycyl-tRNA synthetase CMT2D glycyl-	.³º CMT2D 가	induced diffe	3 - q21.1 rentiation - a ИТ4А	GDAP1(G ssociated prote	anglioside ein 1)
synthetase , CMT2D pyramidal CMT	aminoacyl tRNA CMT5 glycyl-tRNA syn-	, mRNA	, 48-50	DAP1 Schwann cell GDAP1	
thetase 가		가 Schwa	nn cell		
(5) CMT2E CMT2E	NEFL	,	, Schwa	nn cell 가	
(neurofilament light chain) . NEFL CMT2E		(2) CMT4B CMT4B		CMT4B1	CMT4B2

CMT4B1		11q23	.⁵¹ Per	riaxin	Sch	nwann d	ell	ab-
MTMR	2 (myotubularin - relate	ed phos-	axonal	membrai	ne		,	
phatase 2)		51	Schwann	n cell	,	Schwa	ann cell	ad-
MTMR2			axonal	peri-a	xonal cyto	oplasm		,
	(teased fiber)	가	가	+			58,	,59
	(segmental)							
MTMR2/⊦	(wrapping)		4) Rela	ated perip	heral ne	uropath	y	
	52		(1) DSN	N				
CMT4B2 SBF2	(SET binding factor 2)		DSN	1893	Charcot		Déjé	rine
	. ⁵³ 11p15		Sottas			60	DS	
SBF2 MTMR13(myotubulin-related pr	otein 13)						가
,	MT4B1 MTMI	•	기	}	С	:МТЗ		
(homolog				SN				가
CMT4B2	,,,			, CM	IT3	СМТ		
CMT4B1	53			, -		PMP22,	MPZ.	EGR2.
	•	가	NEFL		가		···· —,	,
				10,15,19	•	PRX		
CM	IT4B1 CMT4B2	•	가	,	ľ	DSN		.61
misfolding	0 152		DSN		•		m/s	•
mororaring	•		2011			. , , ,	, 0	
(3) CMT4C	1005				,			
CMT 4C KIAA	1985							
	54 141 4 4 4 0 0 5		(0) 011					
	. ⁵⁴ KIAA1985		(2) CH					
			СН				011	
		parative			71.40	1-	. CH	
sequence alignmen		. 0110			가 10 m		ON	
TDD	(multiple) SH3		,		D:	SN	
TPR	•		011					0007
(4) OMT 15			СН	15,19	PN	MP22, MI	PZ E	GR2가
(4) CMT4D		0.4		•				
CMT4D		q24	(0) 1111					
, N - myc down	stream - regulated gen		(3) HN			,		
		•		17p11.2 - p	12 가	(del	etion)	
	,	,						
,					HNPP (he		-	
				ability to	pressure _l			HNPF
			PMP2	22		mRN	A	
(5) CMT4E							,	
CMT4E			PMP22	fr	ameshift			
zinc finger					.63 HNPP			
EGR2	. EGR2				toma	cul a ł	,	
CMT4E	CMT1D, DSN, C	H						
	. ¹⁹ (CMT1D)					가	(F	Fig. 2-
			C).	HNPF	가 CMT1	A		
(6) CMT4F								
Periaxin								
	CMT4F .56	Periaxin	(4) GA	N				
Schwann cell	(cytoskeletor	n)			(gian	t axonal	l neurop	pathy;
			GAN)					

gigaxonin			68		가	CMT1A		
64	.64 (node of Ranvier)							
	(masses of tightly	/ woven neu-	CMT		,			
rofilaments)		,		PMP22mRNA				
0.5	가							
65								
	•			•				
	,					69		
•						•		
		_	가			_		
		•	,		가			
2. CMT			CMT1A					
CMT1A CMT	가	PMP22						
가			Shy		가			
	12							
PMP22 mR	,	rexpression)						
_	, mRN							
		' 	3) NT-3 (neurot	ronhin - 3)				
.° mRNA	⁶ CMT1A 50% ,	PMP22 mRNA	Schwann cell	торинг-э)		N -		
(33%		IIIKNA		ce adhesion mole	دا مایت			
,	CMT1A		fibronectin	se adriesion mole	Juie, ic	neu -		
•	OW 1 17 t		rotrophic factor	가	,	nou		
				70	СМ	Т		
			가	Schwann cell				
1)								
(onapriston	e)		CMT1A	xenograft				
CMT1A				chwann cell		,		
PMP22 MI	PZ		Schwann cell-neuron (neurofilamen秒 가 .71					
	_							
	ŀ	MP22 mRNA		trophic agent				
CMT	.6		CMT1A7∤ NT-3 Schwan	n coll				
Schwann cell		CMT1A	. NT - 3가	ii ceii (denervate	, 2d) CM [°]	т		
ochwann cen	가	OWITIA	Schwann cell		iu) Civi	•		
(in v		•	Conwann con	, , insulin-like	arowt	h factor		
,	•	transcription	(IGF) platele	t-derived grow	•			
factor	가 .	·	(PDGF - BB)	-	' ት			
PMP22	mRNA		xenograft	, 가	Schw	ann cell		
,67	GABA -		NT - 3					
CMT	anti-GABAer	gic	.* N	IT-3 フ		,		
_,				_, _,	, CM	Г1А		
가			۰	가 가				
	•		. 8					
2)	(ascorbic acid)							
,	Schwann cell							
(dorsal root gang			СМТ					
(asioai ioot gang	g, D.(O)		·····	. CMT				

, 가 가 가 가 가 PMP22 가 CMT

REFERENCES

가

- Charcot J, Marie P. Sue une forme particulaire d'atrophie musculaire progressive souvent familial debutant par les pieds et les jamber et atteingnant plus tard les mains. Rev Med 1886:6:97-138.
- 2. Tooth H. *The peroneal type of progressive muscular atro-phy*. London: Lewis, 1886.
- 3. Nelis E, Haites N, Van Broeckhoven C. Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies. *Hum Mutat* 1999;13:11-28.
- Acsadi AS, Michael E, Krajewski K, Lewis RA. Electrophysiologic criteria defining Charcot-Marie-Tooth disease with intermediate conduction velocities. *Neurology* 2004;62(suppl 5):A415.
- Warner LE, Garcia CA, Lupski JR. Hereditary peripheral neuropathies: clinical forms, genetics, and molecular mechanisms. *Annu Rev Med* 1999;50:263-275.
- Sereda MW, Meyer zu Horste G, Suter U, Uzma N, Nave KA. Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). *Nat Med* 2003;9:1533-1537.
- Passage E, Norreel JC, Noack-Fraissignes P, et al.
 Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. *Nat Med* 2004;10:396-401.
- Sahenk Z, Nagaraja HN, McCracken BS, et al. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. *Neurology* 2005;65:681-689.
- 9. Roa BB, Garcia CA, Suter U, et al. Charcot-Marie-Tooth disease type 1A association with a spontaneous point mutation in the PMP22 gene. *N Engl J Med* 1993;329:96-101.
- Roa BB, Dyck PJ, Marks HG, Chance PF, Lupski JR. D?j?rine-Sottas syndrome associated with point mutation in the peripheral myelin protein 22 (PMP22) gene. *Nat Genet* 1993;5:269-273.
- 11. Vallat JM, Sindou P,Preux PM, et al. Ultrastructural PMP22 expression in inherited demyelinating neu-

- ropathies. Ann Neurol 1996;39:813-817.
- 12. Sereda M, Griffiths I, Puhlhofer A, et al. A transgenic rat model of Charcot-Marie-Tooth disease. *Neuron* 1996;16:1049-1060.
- 13. Lemke G, Axel R. Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin. *Cell* 1985;40:501-508.
- 14. Xu W, Manichella D, Jiang H, et al. Absence of PO leads to the dysregulation of myelin gene expression and myelin morphogenesis. *J Neurosci Res* 2000;60:714-724.
- Warner LE, Hilz MJ, Appel SH, et al. Clinical phenotypes of different MPZ (PO) mutations may include Charcot-Marie-Tooth type IB, Déjérine-Sottas, and congenital hypomyelination. *Neuron* 1996;17:451-460.
- Marrosu MG, Vaccargiu S, Marrosu G, Vannelli A, Cianchetti C, Muntoni F. Charcot-Marie-Tooth disease type 2 associated with mutation of the myelin protein zero gene. *Neurology* 1998;50:1397-1401.
- 17. Hattori N, Yamamoto M, Yoshihara T, et al. Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): a clinicopathological study of 205 Japanese patients. *Brain* 2003;126:134-151.
- 18. Street VA, Bennett CL, Goldy JD, et al. Mutation of a putative protein degradation gene LITAF/SIMPLE in Charcot-Marie-Tooth disease 1C. *Neurology* 2003;60:22-26.
- 19. Warner LE, Mancias P, Butler IJ, et al. Mutations in the early growth response 2 (EGR2) gene are associated with hereditary myelinopathies. *Nat Genet* 1998;18:382-384.
- 20. Topilko P, Schneider-Maunoury S, Levi G, et al. Krox-20 controls myelination in the peripheral nervous system. *Nature* 1994;371:796-799.
- 21. Nagarajan R, Svaren J, Le N, Araki T, Watson M, Milbrandt J. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. *Neuron* 2001;30:355-368.
- 22. Scherer SS. Molecular specializations at nodes and paranodes in peripheral nerve. *Microsc Res Tech* 1996;34:452-461.
- 23. Choi BO, Lee MS, Shin SH, et al. Mutational analysis of PMP22, MPZ, GJB1, EGR2 and NEFL in Korean Charcot-Marie-Tooth neuropathy patients. *Hum Mutat* 2004;24:185-186.
- Scherer SS, Deschenes SM, Xu YT, Grinspan JB, Fischbeck KH, Paul DL. Connexin32 is a myelin-related protein in the PNS and CNS. *J Neurosci* 1995;15:8281-8294.
- 25. Dubourg O, Tardieu S, Birouk N, et al. Clinical, electrophysiological and molecular genetic characteristics of 93 patients with X-linked Charcot-Marie-Tooth disease. *Brain* 2001;124:1958-1967.
- 26. Rozear MP, Pericak-Vance MA, Fischbeck K, et al. Hereditary motor and sensory neuropathy, X-linked a half century follow-up. *Neurology* 1987;37:1460-1465.

- Hahn AF, Brown WF, Koopman WJ, Feasby TE. X-linked dominant hereditary motor and sensory neuropathy. *Brain* 1990;113:1511-1525.
- 28. Hahn AF, Bolton CF, White CM, et al. Genotype/phenotype correlations in X-linked dominant Charcot-Marie-Tooth disease. *Ann N Y Acad Sci* 1999;883:366-382.
- Züchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. *Nat Genet* 2004;36:449-451.
- 30. Reilly MM. Axonal Charcot-Marie-Tooth disease: The fog is slowly lifting! *Neurology* 2004;65:186-187
- 31. Zhao C, Takita J, Tanaka Y, et al. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. *Cell* 2001;105:587-597.
- 32. Honda S, Aihara T, Hontani M, Okubo K, Hirose S. Mutational analysis of action of mitochondrial fusion factor mitofusin-2. *J Cell Sci* 2005;118:3153-3161.
- 33. Santel A, Fuller MT. Control of mitochondrial morphology by a human mitofusin. *J Cell Sci* 2001;114:867-874.
- 34. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. *J Biol Chem* 2005;280:26185-26192.
- 35. Eura Y, Ishihara N, Yokota S, Mihara K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. *J Biochem (Tokyo)* 2003;134:333-344.
- 36. Verhoeven K, De Jonghe P, Coen K, et al. Mutations in the small GTP-ase late endosomal protein RAB7 cause Charcot-Marie-Tooth type 2B neuropathy. *Am J Hum Genet* 2003;72:722-727.
- 37. Jordens I, Fernandez-Borja M, Marsman M, et al. The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein-dynactin motors. *Curr Biol* 2001;11:1680-1685.
- 38. Klein CJ, Cunningham JM, Atkinson EJ, et al. The gene for HMSN2C maps to 12q23-24: a region of neuromuscular disorders. *Neurology* 2003;60:1151-1156.
- 39. Antonellis A, Ellsworth RE, Sambuughin N, et al. Glycyl tRNA synthetase mutations in Charcot-Marie-Tooth disease type 2D and distal spinal muscular atrophy type V. *Am J Hum Genet* 2003;72:1293-1299.
- 40. Fabrizi GM, Cavallaro T, Angiari C, et al. Giant axon and neurofilament accumulation in Chartcot-Marie-Tooth disease type 2E. *Neurology* 2004;62:1429-1431.
- Carter J, Gragerov A, Konvicka K, Elder G, Weinstein H, Lazzarini RA. Neurofilament (NF) assembly; divergent characteristics of human and rodent NF-L subunits. *J Biol Chem* 1998;273:5101-5108.
- Brownlees J, Ackerley S, Grierson AJ, et al. Charcot-Marie-Tooth disease neurofilament mutations disrupt neurofilament assembly and axonal transport. *Hum Mol Genet* 2002;11:2837-2844.
- 43. Irobi J, Impe KV, Seeman P, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropa-

- thy. Nat Genet 2004;36:597-601.
- 44. Benndorf R, Welsh MJ. Shocking degeneration. *Nat Genet* 2004;36:547-548.
- 45. Evgrafov OV, Mersiyanova I, Irobi J, et al. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. *Nat Genet* 2004;36:602-606.
- Sun X, Fontaine JM, Rest JS, et al. Interaction of human HSP22 (HSPB8) with other small heat shock proteins. *J Biol Chem* 2004;279:2394-2402.
- 47. Benndorf R, Sun X, Gilmont RR, et al. HSP22, a new member of the small heat shock protein superfamily, interacts with mimic of phosphorylated HSP27 ((3D)HSP27). *J Biol Chem* 2001;276:26753-26761.
- 48. Baxter RV, Ben-Othmane K, Rochelle JM, et al. Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21. *Nat Genet* 2002;30:21-22.
- 49. Liu H, Nakagawa T, Kanematsu T, Uchida T, Tsuju S. Isolation of 10 differentially expressed cDNAs in differentiated Neuro2a cells induced through controlled expression of the GD3 synthase gene. *J Neurochem* 1999;72:1781-1790
- 50. Cuesta A, Pedrola L, Sevilla T, et al., The gene encoding ganglioside-induced differentiation-associated protein 1 is mutated in axonal Charcot-Marie-Tooth type 4A disease. *Nat Genet* 2002;30:22-25.
- 51. Bolino A, Muglia M, Conforti FL, et al. Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. *Nat Genet* 2000;25:17-19.
- 52. Gambardella A, Bono F, Muglia M, Valentino P, Quattrone A. Autosomal recessive hereditary motor and sensory neuropathy with focally folded myelin sheaths (CMT4B). *Ann NY Acad Sci* 1999;883:47-55.
- 53. Senderek J, Bergmann C, Weber S, et al. Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. *Hum Mol Genet* 2003;12:349-356.
- 54. Senderek J, Bergmann C, Stendel C, et al. Mutations in a gene encoding a novel SH3/TPR domain protein cause autosomal recessive Charcot-Marie-Tooth type 4C neuropathy. *Am J Hum Genet* 2003;73:1106-1119.
- 55. Hunter M, Bernard R, Freitas E, et al. Mutation screening of the N-myc downstream-regulated gene 1 (NDRG1) in patients with Charcot-Marie-Tooth Disease. *Hum Mutat* 2003;22:129-135.
- 56. Guilbot A, Williams A, Ravise N, et al. A mutation in periaxin is responsible for CMT4F, an autosomal recessive form of Charcot-Marie-Tooth disease. *Hum Mol Genet* 2001;10:415-421.
- 57. Gillespie CS, Sherman DL, Blair GE, Brophy PJ. Periaxin, a novel protein of myelinating Schwann cells with a possible role in axonal ensheathment. *Neuron* 1994;12:497-508.

. .

- 58. Sherman DL, Brophy PJ. A tripartite nuclear localization signal in the PDZ-domain protein L-periaxin. *J Biol Chem* 2000;275:4537-4540.
- Scherer SS, Xu YT, Bannerman PG, Sherman DL, Brophy PJ. Periaxin expression in myelinating Schwann cells modulation by axon-glial interactions and polarized localization during development. *Development* 1995;121:4265-4273.
- 60. Déjérine H, Sottas J. Sur la nevritte interstitielle, hypertrophique et progressive de l'enfance. *CR Soc Biol Paris* 1893;45:63-96.
- 61. Kijima K, Numakura C, Shirahata E, et al. Periaxin mutation causes early-onset but slow-progressive Charcot-Marie-Tooth disease. *J Hum Genet* 2004;49:376-379.
- 62. Chance PF, Alderson MK, Leppig KA, et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. *Cell* 1993;72:143-151.
- Nicholson GA, Valentijn LJ, Cherryson AK, et al. A frame shift mutation in the PMP22 gene in hereditary neuropathy with liability to pressure palsies. *Nat Genet* 1994;6:263-266.
- 64. Bomont P, Cavalier L, Blondeau F, et al., The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. *Nat Genet* 2000;26:370-374.

- 65. Asbury AK, Gale MK, Cox SC, Baringer JR, Berg BO. Giant axonal neuropathy a unique case with segmental neurofilamentous masses. *Acta Neuropathol* 1972;20:237-247.
- 66. Perea J, Robertson A, Tolmachova T, et al. Induced myelination and demyelination in a conditional mouse model of Charcot-Marie-Tooth disease type 1A. *Hum Mol Genet* 2001;10:1007-1018.
- 67. Desarnaud F, Do Thi AN, Brown AM, et al. Progesterone stimulates the activity of the promoters of peripheral myelin protein-22 and protein zero genes in Schwann cells. *J Neurochem* 1998;71:1765-1768.
- 68. Eldridge CF, Bunge MB, Bunge RP, Wood PM. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. *J Cell Biol* 1987;105:1023-1034.
- 69. Rodriguez Melendez R. Importance of water-soluble vitamins as regulatory factors of genetic expression. *Rev Invest Clin* 2002;54:77-83.
- Fu SY, Gordon T. The cellular and molecular basis of peripheral nerve regeneration. *Mol Neurobiol* 1997;14:67-116
- Sahenk Z, Chen L, Mendell JR. Effects of PMP22 duplication and deletions on the axonal cytoskeleton. *Ann Neurol* 1999;45:16-24.