DOI QR코드

DOI QR Code

SKEW POLYNOMIAL RINGS OVER σ-QUASI-BAER AND σ-PRINCIPALLY QUASI-BAER RINGS

  • HAN JUNCHEOL (Department of Mathematics Education Pusan National University)
  • Published : 2005.01.01

Abstract

Let R be a ring R and ${\sigma}$ be an endomorphism of R. R is called ${\sigma}$-rigid (resp. reduced) if $a{\sigma}r(a) = 0 (resp{\cdot}a^2 = 0)$ for any $a{\in}R$ implies a = 0. An ideal I of R is called a ${\sigma}$-ideal if ${\sigma}(I){\subseteq}I$. R is called ${\sigma}$-quasi-Baer (resp. right (or left) ${\sigma}$-p.q.-Baer) if the right annihilator of every ${\sigma}$-ideal (resp. right (or left) principal ${\sigma}$-ideal) of R is generated by an idempotent of R. In this paper, a skew polynomial ring A = R[$x;{\sigma}$] of a ring R is investigated as follows: For a ${\sigma}$-rigid ring R, (1) R is ${\sigma}$-quasi-Baer if and only if A is quasi-Baer if and only if A is $\={\sigma}$-quasi-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$ (2) R is right ${\sigma}$-p.q.-Baer if and only if R is ${\sigma}$-p.q.-Baer if and only if A is right p.q.-Baer if and only if A is p.q.-Baer if and only if A is $\={\sigma}$-p.q.-Baer if and only if A is right $\={\sigma}$-p.q.-Baer for every extended endomorphism $\={\sigma}$ on A of ${\sigma}$.

Keywords

References

  1. E. P. Armendariz, A note on extensions of Baer and p.p. rings, Austral. Math. Soc. 18 (1974), 470-473 https://doi.org/10.1017/S1446788700029190
  2. S. K. Berberian, Baer *-rings, Springer-Verlag, Berlin-Heidelberg-New York, 1972
  3. G. F. Birkenmeier, Baer rings and quasi-continuous rings have a MSDN, Pacific J. Math. 97 (1981), 283-292 https://doi.org/10.2140/pjm.1981.97.283
  4. G. F. Birkenmeier, Idempotents and completely semiprime ideals, Comm. Algebra 11 (1983), 567-580 https://doi.org/10.1080/00927878308822865
  5. G. F. Birkenmeier, Decompositions of Baer-like rings, Acta Math. Hungar. 59 (1992), 319-326 https://doi.org/10.1007/BF00050894
  6. G. F. Birkenmeier, J. K. Kim and J. K. Park, On extensions of quasi-Baer and principally quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 25-42 https://doi.org/10.1016/S0022-4049(00)00055-4
  7. A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Pitman, Boston, 1980
  8. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424 https://doi.org/10.1215/S0012-7094-67-03446-1
  9. C. Hong, N. Kim and T. Kwak, Ore extensions of Baer and p.p-rings, J. Pure Appl. Algebra 151 (2000), 215-226 https://doi.org/10.1016/S0022-4049(99)00020-1
  10. A. A. M. Kamal, Idempotents in polynomial rings, Acta Math. Hungar. 59 (1992), no. 3-4, 355-363 https://doi.org/10.1007/BF00050898
  11. I. Kaplansky, Rings of Operators, Lecture Notes in Math., Benjamin, New York, 1965
  12. P. Pollingher and A. Zaks, On Baer and quasi-Baer rings, Duke Math. J. 37 (1970), 127-138 https://doi.org/10.1215/S0012-7094-70-03718-X