Risk Factor Analysis for $SaO_2$ Instability after Systemic-pulmonary Shunt

전신-폐 단락술 후 산소포화도의 불안정성의 위험인자 분석

  • Jung Sung-Ho (Department of Thoracic and Cardiovascular Surgery, College of Medicine, University of Ulsan) ;
  • Yun Sok-Won (Department of Thoracic and Cardiovascular Surgery, College of Medicine, University of Ulsan) ;
  • Park Jung-Jun (Department of Thoracic and Cardiovascular Surgery, College of Medicine, University of Ulsan) ;
  • Seo Dong-Man (Department of Thoracic and Cardiovascular Surgery, College of Medicine, University of Ulsan) ;
  • Kim Young-Hwue (Department of Pediatrics, College of Medicine, University of Ulsan) ;
  • Ko Jae-Kon (Department of Pediatrics, College of Medicine, University of Ulsan) ;
  • Park In-Sook (Department of Pediatrics, College of Medicine, University of Ulsan) ;
  • Yun Tae-Jin (Department of Thoracic and Cardiovascular Surgery, College of Medicine, University of Ulsan)
  • 정성호 (울산대학교 의과대학 흉부외과학교실) ;
  • 윤석원 (울산대학교 의과대학 흉부외과학교실) ;
  • 박정준 (울산대학교 의과대학 흉부외과학교실) ;
  • 서동만 (울산대학교 의과대학 흉부외과학교실) ;
  • 김영휘 (울산대학교 의과대학 소아과학교실) ;
  • 고재곤 (울산대학교 의과대학 소아과학교실) ;
  • 박인숙 (울산대학교 의과대학 소아과학교실) ;
  • 윤태진 (울산대학교 의과대학 흉부외과학교실)
  • Published : 2005.04.01

Abstract

Arterial oxygen saturation $(SaO_2)$ instability frequently takes place after systemic-pulmonary shunt without shunt occlusion. We analyzed actual incidence and risk factors for $SaO_2$ instability after shunt operations, and possible mechanisms were speculated on. Material and Method: Ninety three patients, who underwent modified Blalock-Taussig shunt from January 1996 to December 2000, were enrolled in this study. Adequacy of shunt was verified in all patients, either by ensuing one ventricle or biventricular repair later on or by appropriate pulmonary artery growth on postoperative angiogram. Age, body weight, hemoglobin level at operation were 3 day to 36 years (median: 1.8 months), 2.5kg to 51kg (median: 4.1kg) and $10.7\~24.3$ gm/dL (median: 15.2 gm/dL) respectively. Preoperative diagnoses were functional single ventricle with pulmonary stenosis or atresia in 39, tetralogy of Fallot in 38 and pulmonary atresia with intact ventricular septum in 16. Pulmonary blood flow (PBF) was maintained pre-operatively by patent ductus or previous shunt in 64 and by forward flow through stenotic right ventricular outflow tract (RVOT) in 29. $SaO_2$ instability was defined as $SaO_2$ less than $50\%$ for more than 1 hour with neither anatomic obstruction of shunt nor respiratory problem. Result: 10 patients $(10.7\%)$ showed $SaO_2$ instability after shunt operation. After shunt occlusion was ruled out by echocardiogram, they received measures to lower pulmonary vascular resistance (PVR), which worked within a few hours in all patients. Risk factors for $SaO_2$ instability included older age at operation (p=0.039), lower preoperative $SaO_2$ (p=0.0001) and emergency operation (p=0.001). PBF through stenotic RVOT showed marginal statistical significance (p=0.065). Conclusion: $SaO_2$ instability occurs frequently after shunt operation, especially in patients with severe hypoxia pre-operatively or unstable clinical condition necessitating emergency operation. Temporary elevation of pulmonary vascular resistance is a possible mechanism in this specific clinical setting.

다양한 선천성 심기형에서 전신-폐 단락술을 시행하는 경우 단락의 기술적 실패에 의한 폐색이 없이 수술 후 산소포화도가 불안정한 경우가 있다. 이에 전신-폐 단락술 후 산소포화도 불안정성의 빈도 및 위험 인자를 분석하고 그 원인 기전에 대해 고찰하였다. 대상 및 방법: 1996년 1월부터 2000년 12월까지 전신-폐 단락술을 받은 환자 중 폐동맥의 적절한 성장으로 단심실 혹은 양심실 교정을 받았거나 받을 예정인 93명의 환자를 연구 대상으로 하였다. 환자들의 연령, 수술 당시 체중, 수술 전혈색소치는 각각 3일-36세(중간 값: 1.8개월), 2.3-51kg (중간 값: 4.1kg), $10.7\~24.3$ gm/dL (중간 값: 15.2 gm/dL)이었다. 진단은 폐동맥 폐쇄나 협착을 동반한 기능적 단심실(39예), 활로씨 4징증(38예), 심실중격결손이 없는 폐동맥 폐쇄(16예)의 순이었고, 폐혈류 공급원은 동맥관이나 기존 단락(64예) 및 협착성 우심실 유출로를 통한 전방 혈류(29)였다. 수술 후 단락의 기술적 실패나 호흡 보조의 문제점이 없이 산소포화도가 1시간 이상 $50\%$ 미만으로 유지되었던 경우 산소 포화도 불안정성으로 정의하였다. 결과: 수술 후 10명$(10.7\%)$의 환자에서 산소포화도의 불안정성을 보였으며, 심초음파로 단락의 폐색 가능성을 배제한 뒤 폐혈관 저항을 감소시키는 치료를 통해 모두 수 시간 내에 산소포화도를 회복시킬 수 있었다. 산소포화도의 불안정성의 위험 인자로는 수술 시 연령의 증가(p=0.039),수술 전 낮은 산소 포화도(p=0.001) 및 응급 수술(p=0.0001) 등이었고, 협착성 우심실 유출로를 통한 전방 혈류에 의한 폐혈류 공급은 약간의 유의성을 나타내었다(p=0.065). 걸론: 단락이 필요한 선천성 심기형 환자가 수술 전 저산소증이 심하고 혈역학이 불안정한 경우 수술 후 폐혈관 저항의 일시적 상승에 의해 산소포화도의 불안정성이 나타날 수 있으며, 이 경우 폐혈관 저항을 감소시키는 치료를 통하여 산소포화도를 안정시킬 수 있다.

Keywords

References

  1. Alkhulaifi AM, Gayet FL, Serraf A, Belli E, Planche C. Systemic pulmonary shunt in reo nates: early clinical outcome and choice of surgical approach. Ann Thorac Surg 2000;69:1499-504 https://doi.org/10.1016/S0003-4975(00)01078-X
  2. Beyersdorf F, Matheis G, Kruger S, et al. Avoiding reperjusion injury after limb revascularization: experimental observation and recommendations for clinical application. J Vase Surg 1989;9:757-66 https://doi.org/10.1067/mva.1989.vs0090757
  3. McCord JM. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 1985;312:159-63 https://doi.org/10.1056/NEJM198501173120305
  4. Ku DD. Coronary vascular reactidty after acute myocardial ischemia. Science 1982;218:576-8 https://doi.org/10.1126/science.7123259
  5. Quillen JE, Selke FW, Brooks LA, Harrison DG.lschemiareperjusion impairs endothelium-dependent relaxation of coronary microvessels but does not affect large arteries. Circulation 1990;82:586-94 https://doi.org/10.1161/01.CIR.82.2.586
  6. Summers ST, Zinner MJ, Freischlag JA. Production of Endothelium-derived relaxing facur (EDRF) is compromised after ischemia and reperjusion. Am J Surg 1993;166:216-20 https://doi.org/10.1016/S0002-9610(05)81059-1
  7. McIntyre RC Jr, harken AH, Fullerton DA. Mechanisms of pulmonary vasomotor junction in normal and injured lung. Surgery 1994;115:273-5
  8. Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM. Inhaled nitric oxide: a selective pulmonary vasodilator reversing nitirc oxide: a selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991:83: 2038-47 https://doi.org/10.1161/01.CIR.83.6.2038
  9. Lunn RJ. Inhaled nitric oxide therapy. Mayo Clin Proc 1995: 70:247-55 https://doi.org/10.4065/70.3.247
  10. Rocchini AP, Rosenthal A, Barger AC, Casteneda AR, Nadas AS. Pathogenesis of paradoxiacla hypertension after coarctation resection. Circulation 1976;54:382-7 https://doi.org/10.1161/01.CIR.54.3.382
  11. Tworetzky W, Moore P, Bekker JM, Bristow J, Black SM, Fineman JR. Pulmonary blood flow alters nitric oxide production in patients undergoing device closure of atrial septal defects. J Am Coli Cardiol 2000;35:463-7 https://doi.org/10.1016/S0735-1097(99)00576-8
  12. Downing SW, Edmunds LH. Release of vasoactive substances during cardiopulmonary bypass. Ann Thorac Surg 1992; 54:1236-43 https://doi.org/10.1016/0003-4975(92)90113-I
  13. Komai H, Adatia IT, Elliott MJ, de Leval MR, Haworth SQ. Increased plasma levels of endothelin-l after cardiopulmonary bypass in patients with pulmonary hypertension and congenital heart disease. J Thorac Cardiovasc Surg 1993; 106:473-8
  14. Ferreiro CR, Chagas AC, Carvalho MH, et al. Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disese: a novel pathophysiological adaptive mechanism. Circulation 2001;103:2272-6 https://doi.org/10.1161/01.CIR.103.18.2272
  15. Journais D, Pouard P, Mauriat P, Malhere T, Vouhe P, Safran D. Inhaled nitric oxide as a therapy for pulmonary hypertension after operations fir congenital heart defects. J Thorac Cardiovasc Surg 1994;107:1129-35
  16. Matsui J, Yahagi N, Kumon K, et al. Effect of inhaled nitric oxide on postoperative pulmonay circulation in patients with congenital heart disease. Artif Organs 1997;21:17-20 https://doi.org/10.1111/j.1525-1594.1997.tb00692.x
  17. Roberts jr JD, Lang P, Bigatello LM, Vlahakes GJ, Zapol WM. Inhaled nitirc oxide in congenital heart disease. Circulation 1993;87:447-53 https://doi.org/10.1161/01.CIR.87.2.447
  18. Laitinen PO, Rasanen J, Sairanen H. Postoperative nitric oxide therapy in children with congenital heart disease. Can the need be predicted? Scand Cardiovasc J 2000;34:149-53 https://doi.org/10.1080/14017430050142152
  19. Miller OI, Celerrneyer DS, Deanfield JE, Macrae DJ. Very low dose inhaled nitric oxide: a selective pulmonary vasodilator after operations for congenitla heart disease. J Thorae Cardiovasc Surg 1994;108:487-94
  20. Berner M, Beghetti M, Spahr-Schopfer I, Oberhansli I, Friedli B. Inhaled nitric oxide to test the vasodilator capacity of the pulmonary vascular bed in children with long-standing pulmonary hypertension and congenital heart disease. Am J Cardiol 1994;77:532-5 https://doi.org/10.1016/S0002-9149(97)89353-8
  21. Adatia I, Atz AM, Jonas RA. Wessel DL. Diagnostic use of inhaled nitric oxide after neonatal cardiac operations. J Thorac Cardiovasc Surg 1996;112:1403-5 https://doi.org/10.1016/S0022-5223(96)70166-6
  22. Fullerton DA, Jones SD, Jaggers J, Piedalue F, Grover FL, McIntyre FC. Effective control of pulmonary vascular resistance with inhaled nitric oxide after cardiac surgery. J Thorae Cardiovasc Surg 1996;111:753-63 https://doi.org/10.1016/S0022-5223(96)70335-5
  23. Yahagi N, Kumon K, Tanigami H, et al. Cardiac surgery and inhaled nitric oxide: indication and follow-up (2-4 years). Artif Organs 1998;22:886-891 https://doi.org/10.1046/j.1525-1594.1998.06186.x
  24. Beghetti M, Morris K, Cox P, Bohn D, Adatia I. Inhaled nitric oxide differetiates pulmonary vasospasm from vascular obstruction after surgery for congenital heart disease. Intensive Care Med 1999;25:1126-30 https://doi.org/10.1007/s001340051022
  25. Shah AS, Smerling AJ, Quaegebeur JM, Michler RE. Nitric oxide treatment for pulmonary hypertension after neonatal cardiac operation. Ann Thorac Surg 1995;60:1791-3 https://doi.org/10.1016/0003-4975(95)00657-5
  26. Gustafsson LE, Leone AM, Persson MG, Wiklund NP, Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun 1991;181:852-7 https://doi.org/10.1016/0006-291X(91)91268-H
  27. Trolin G, Anden T, Hedenstiema G. Nitric oxide (NO) in expired air at rest and during exercise. Acta Physiol Scand 1994;151:159-63 https://doi.org/10.1111/j.1748-1716.1994.tb09733.x