Effects of Gamicheungpyehwadam-tang on Immune-cell Regulation in Association with Bronchial Asthma in OVA-induced Mouse Model

가미청폐화담탕이 천식 유발 병태 모델에서 천식 관련 활성 면역세포에 미치는 영향

  • Lim, Dong-Ju (Department of Pathology, College of Oriental Medicine, Daejeon Univerisy) ;
  • Jeong, Hye-Gwang (Department of Pharmacy, College of Pharmacy, Research Center for Proteineous Materials, Chosun University) ;
  • Lee, Yong-Gu (Department of Internal medicine, College of Oriental Medicine, Daejeon University) ;
  • Kim, Dong-Hee (Department of Pathology, College of Oriental Medicine, Daejeon Univerisy)
  • 임동주 (대전대학교 한의과대학 병리학교실) ;
  • 정혜광 (조선대학교 약학대학) ;
  • 이용구 (대전대학교 한의과대학부속병원 내과) ;
  • 김동희 (대전대학교 한의과대학 병리학교실)
  • Published : 2006.06.25

Abstract

These studies were investigated the effects of Gamicheungpyehwadam-tang (CPHDT) on immune-cell regulation in association with bronchial asthma in OVA-induced mouse model. The administration of 400 mg/kg CPHDT significantly reduced the number of total cells in lung, peripheral lymph node and spleen in OVA-induced bronchial asthma mouse model. The administration of 400 mg/kg CPHDT significantly reduced $CD3^+,{\;}CD19^+$and $CD3^+,{\;}CD69^+$ cell numbers separated from lung, peripheral lymph node and spleen in OVA-induced bronchial asthma mouse model. CPHDT significantly reduced $CD3^+/CCR3^+,{\;}CD4^+,{\;}B220^+/IgE^+$, and $CD3^+/DX5^+$ cell numbers separated from lung, peripheral lymph node and spleen in OVA-induced bronchial asthma mouse model in a dose dependent manner, However, CPHDT significantly reduced $CD8^+$ cell numbers from only lung and spleen. The administration of CPHDT significantly reduced $NK^+$ cell numbers separated from lung of OVA-induced bronchial asthma mouse model in all concentrations, but 200 mg/kg CPHDT reduced $NK^+$ cell numbers separated from peripheral lymph node. These results suggest that CPHDT has anti-asthma and anti-allergy effects. In addition to, CPHDT may be useful treatment of asthma based on the further studies about the individual efficacy search of the components of CPHDT and the adding of variety drugs to CPHDT.

Keywords

References

  1. 대한 천식 및 알레르기 학회 : 천식과 알레르기 질환, 군자출판사, pp 244-254, 2002
  2. 전국의과대학교수 역 : 오늘의 진단 및 치료, 도서출판 한우리, pp 287-296, 1999
  3. 김영호 외 : 소아 천식 유지법 실태와 천식 환자와 가정생활에 미치는 영향에 대한 조사. 소아 알레르기 및 호흡기 학회지 15권 4호. 2005
  4. 전국한의과대학폐계내과학교실 편저 : 동의폐계내과학, 한문화사, pp 162-202, 2002
  5. 금관수. 天門冬이 氣管支 喘息 動物模型의 免疫反應에 미치는 影響, 상지대학교대학원 석사학위논문, 2002
  6. 이명부 외. 長江醫活, 북경과학기술출판사, pp 185-197, 1989
  7. 중의연구원. 중의증상감별진단학, 인민위생출판사, pp 229-233, 1987
  8. 박광은. 千緡導痰湯이 喘息에 미치는 影響에 關한 實驗的 硏究, 경희대학교대학원 석사학위논문, 1993
  9. 노성수. rmIL-5로 유도된 호산구의 활성화 및 성장에서 백굴채의 천식반응 억제효과, 대전대학교대학원 석사학위논문, 2005
  10. 문성훈. 牡丹皮가 喘息유발 cytokine 분비와 호산구 chemotaxis에 미치는 영향, 경희대학교대학원한의학과 박사학위논문, 2005
  11. 조철준. 黃芩이 천식모델 생쥐의 면역세포 및 사이토카인에 미치는 영향, 대전대학교대학원 석사학위논문, 2005
  12. 김성수 외. 桔梗에 의한 알레르기 천식 효과에 대한 연구, 원광대학교대학 원한의학과 박사학위논문, 2004
  13. 이해자. 靑皮가 천식유발 백서에서 VEGF에 미치는 영향, 원광대학교대학원한의학과 박사학위논문, 2004
  14. 김문수. 加味解表二陳湯이 알레르기 喘息 白鼠의 呼吸 樣相과 氣管 組織에 미치는 影響, 동의대학교대학원한의학과 석사학위논문, 2001
  15. 염종훈 외. 정천탕과 정천탕가감방이 알레르기 천식모델 흰쥐의 BALF내 면역세포 및 혈청 IgE에 미치는 영향, 대한한의학회지, 24(1):169-180, 2003
  16. 김진주 외. 麥門冬湯과 定喘化痰降氣湯이 알레르기 천식 모델 흰쥐의 BALF내 면역세포 및 혈청 IgE에 미치는 영향. 대한한의학회지, 23(1):37-49, 2002
  17. 송재진. 半夏가 천식모델 생쥐의 면역세포 및 사이토카인에 미치는 영향, 대전대학교대학원 박사학위논문, 2005
  18. 송상진. 皂角刺가 천식모델 생쥐의 면역세포 및 사이토카인에 미치는 영향, 대전대학교대학원 박사학위논문, 2005
  19. 한영주. 감초가 천식모델 생쥐의 BALF내 면역세포 및 Cytokine에 미치는 효과. 대한한방내과학회지, 25(3):408-417, 2004
  20. 허 준. 동의보감, 법인문화사, pp 2323-2356, 2005
  21. 全國韓醫科大學本草學敎授 공편. 本草學, 永林社, p 148, 149, 460, 478, 482, 484, 1991
  22. Griffiths, P.D., Grundy, J.E. Molecular biology and immunology of cytomegalovirus. Biochem J. 241:313-324, 1987 https://doi.org/10.1042/bj2410313
  23. Bromberg, J.S. The biology of CD2: adhesion, transmembrane signal, and regulatory receptor of immunity. J Surg Res. 54:258-267, 1993 https://doi.org/10.1006/jsre.1993.1041
  24. Hardy, R.R., Hayakawa, K. B cell development pathways. Annu Rev Immunol. 19:595-621, 2001 https://doi.org/10.1146/annurev.immunol.19.1.595
  25. Erin, E.M., Williams, T.J., Barnes, P.J., Hansel, T.T. Eotaxin receptor (CCR3) antagonism in asthma and allergic disease. Curr Drug Targets Inflamm Allergy. 1:201-214, 2002 https://doi.org/10.2174/1568010023344715
  26. Sancho, D., Gomez, M., Sanchez-Madrid, F. CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 26:136-140, 2005 https://doi.org/10.1016/j.it.2004.12.006
  27. Hoglund, P. Induced peripheral regulatory T cells: the family grows larger. Eur J Immunol. 36:264-266, 2006 https://doi.org/10.1002/eji.200535797
  28. Laky, K., Fleischacker, C., Fowlkes, B.J. TCR and Notch signaling in CD4 and CD8 T-cell development. Immunol Rev. 209:274-283, 2006 https://doi.org/10.1111/j.0105-2896.2006.00358.x
  29. Dorshkind, K., Narayanan, R., Landreth, K.S. Regulatory cells and cytokines involved in primary B lymphocyte production. Adv Exp Med Biol. 323:119-123, 1992
  30. Driver, D.J., McHeyzer-Williams, L.J., Cool, M., Stetson, D.B., McHeyzer-Williams, M.G. Development and maintenance of a B220-memory B cell compartment. J Immunol. 167:1393-1405, 2001 https://doi.org/10.4049/jimmunol.167.3.1393
  31. Robinson, D.S., Hamid, Q., Ying, S., Tsicopoulos, A., Barkans, J., Bentley, A.M., Corrigan, C., Durham, S.R., Kay, A.B. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 326:298-304, 1992 https://doi.org/10.1056/NEJM199201303260504
  32. Watanabe, A., Mishima, H., Renzi, P.M., Xu, L.J., Hamid, Q., Martin, J.G. Transfer of allergic airway responses with antigen-primed $CD4^+$ but not $CD8^+$ T cells in brown Norway rats. J Clin Invest. 96:1303-1310, 1995 https://doi.org/10.1172/JCI118165
  33. Lukacs, N.W., Strieter, R.M., Chensue, S.W., Kunkel, S.L. interleukin-4- dependent pulmonary eosinophil infiltration in a murine model of asthma. Am J Respir Cell Mol Biol. 10:526-532, 1994 https://doi.org/10.1165/ajrcmb.10.5.8179915
  34. Foster, P.S., Hogan, S.P., Ramsay, A.J., Matthaei, K.I., Young, I.G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 183:195-201, 1996 https://doi.org/10.1084/jem.183.1.195
  35. Tsuyuki, S., Tsuyuki, J., Einsle, K., Kopf, M., Coyle, A.J. Costimulation through B7-2 (CD86) is required for the induction of a lung mucosal T helper cell 2 (TH2) immune response and altered airway responsiveness. J Exp Med. 185:1671-1679, 1997 https://doi.org/10.1084/jem.185.9.1671
  36. Swain, S.L., Weinberg, A.D., English, M., Huston, G. IL-4 directs the development of Th2-like helper effectors. J Immunol. 145:3796-3806, 1990
  37. Fearon, D.T., Locksley, R.M. The instructive role of innate immunity in the acquired immune response. Science. 272:50-53, 1996 https://doi.org/10.1126/science.272.5258.50
  38. Bendelac, A., Fearon, D.T. Innate pathways that control acquired immunity. Curr Opin Immunol. 9:1-3, 1997 https://doi.org/10.1016/S0952-7915(97)80151-3
  39. Medzhitov, R., Janeway, C.A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell. 91:295-298, 1997 https://doi.org/10.1016/S0092-8674(00)80412-2
  40. Biron, C.A. Activation and function of natural killer cell responses during viral infections.Curr Opin Immunol. 9:24-34, 1997 https://doi.org/10.1016/S0952-7915(97)80155-0
  41. Scharton-Kersten, T.M., Sher, A. Role of natural killer cells in innate resistance to protozoan infections. Curr Opin Immunol. 9:44-51, 1997 https://doi.org/10.1016/S0952-7915(97)80157-4
  42. Yoshimoto, T., Bendelac, A., Watson, C., Hu-Li, J., Paul, W.E. Role of $NK1.1^+$ T cells in a TH2 response and in immunoglobulin E production. Science. 270:1845-1847, 1995 https://doi.org/10.1126/science.270.5243.1845
  43. Prussin, C., Foster, B. TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique Th0 subpopulation. J Immunol. 159:5862-5870, 1997