Screening of the Positive Inotropic Activity of Medicinal Plants Used in Oriental Medicine

  • Choi, Deok-Ho (Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Kang, Dae-Gil (Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Kim, Seung-Ju (Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Cui, Xun (Department of Physiology, Yanbian University College of Medicine) ;
  • Lee, Ho-Sub (Professional Graduate School of Oriental Medicine, Wonkwang University)
  • Published : 2006.06.25

Abstract

Aqueous extracts of medicinal plants traditionally used in the East Asia such as China, Korea, and Japan were screened for inotropic activity using isolated rabbit atria. Among the twenty-one aqueous-extracts from medicinal plants, the aqueous extracts of Convallaria keiskei(ACK) and rhizome of Coptis chinesis (ACC) were found to exhibit distinctive positive inotropic activity. The aqueous extracts of C. keiskei and rhizome of C. chinensis significantly increased atrial stroke volume and pulse pressure in beating rabbit atria. These findings suggest that the aqueous extracts of C. keiskei and rhizome of C. chinensis enhance the cardiac muscle contractility and then could be useful for the treatment of cardiac failure.

Keywords

References

  1. Alpert, N.R., Mulieri, L.A., Warshaw, D. The failing human heart. Cardiovascular Research. 54, 1-10, 2002 https://doi.org/10.1016/S0008-6363(02)00248-1
  2. Francis, G.S. Pathophysiology of chronic heart failure. American Journal of Medicine. 110, 37-46, 2001 https://doi.org/10.1016/S0002-9343(98)00385-4
  3. Braunwald, E., Bristow, M.R. Congestive heart failure: fifty years of progress. Circulation 102, 14-23, 2000 https://doi.org/10.1161/01.CIR.102.1.14
  4. Katzung, B.G., Parmley, W.W. Cardiac Glycosides & Other Drugs Used in Congestive Heart Failure. 8th Ed., New York, McGraw Hill, 200-218, 2001
  5. Felker, G.M., O'Connor, C.M. Inotropic therapy for heart failure: an evidence-based approach. American Heart Journal 142, 393-401, 2001 https://doi.org/10.1067/mhj.2001.117606
  6. Konstam, M.A., Mann, D.L. Contemporary medical options for treating patients with heart failure. Circulation 105, 2244-2246, 2002 https://doi.org/10.1161/01.CIR.0000017420.85607.2D
  7. Lehmann, H.D. Effect of plant glycosides on resistance and capacitance vessels. Arzneimittel-Forschung-Drug Research 34(4):423-429, 1984
  8. Lonn, E., Mckelvie, R. Drug treatment in heart failure. British Medical Journal 320, 1188-1192, 2000 https://doi.org/10.1136/bmj.320.7243.1188
  9. Cho, K.W., Kim, S.H., Kim, C.H., Seul, K.H. Mechanical basis of ANP secretion in beating atria: atrial stroke volume and ECF translocation. American Journal of Physiology 268, 1129-1136, 1995
  10. Guyton, A.C., Hall, J.E. Textbook of medical physiology. 9th Ed., Saunders, Pennsylvania, 107-119, 1996
  11. Hasenfuss, G., Pieske, B. Calcium cycling in congestive heart failure. Journal of Molecular and Cellular Cardiology 34, 951-969, 2002 https://doi.org/10.1006/jmcc.2002.2037
  12. Smith, T.W., Artman, E.M., Friedman, P.L., Blatt, C.M., Marsch, J.D. Digitalis glycosides: mechanism and manifestation of toxicity. Progress in Cardiovascular Diseases 26, 495-540, 1984 https://doi.org/10.1016/0033-0620(84)90014-8
  13. Reuter, H., Henderson, S.A., Han, T., Ross, R.S., Goldhaber, J.I., Philipson, K.D. The $Na^+-Ca2^+$ exchanger is essential for the action of cardiac glycosides. Journal of Cardiovascular Electrophysiology 12, 1295-1301, 2001 https://doi.org/10.1046/j.1540-8167.2001.01295.x
  14. Leier, C.V., Binkley, P.F. Parenteral inotropic support for advanced congestive heart failure. Progress in Cardiovascular Diseases 41(3):207-224, 1998 https://doi.org/10.1016/S0033-0620(98)80056-X
  15. Katz, A. Potential deleterious effect of inotropic agents in the therapy of chronic heart failure. Circulation 73, 184-190, 1986
  16. Simaan, J.A., Faswaz, G., Jabbour, K. Comparison of the cardiodynamic and metabolic effects of dobutamine with those of norepinephrine and dopamine in the isolated heart. Naunyn-Schmiedeberg's Arch Pharmacal 338, 174-179, 1988
  17. Tang, W., Eisenbrand, G. Chinese crugs of plant origine: chemistry, pharmacology, and used in traditional and modern medicine. Springer-Verlag, Berlin, Germany, pp 361-371, 1992
  18. Schmeller, T., Latz-Bruning, B., Wink, M. Biochemical activities of berberine, palmatine and sanguinarine mediating chemical defence against microorganisms and herbivores. Phytochemistry 44, 257-266, 1997 https://doi.org/10.1016/S0031-9422(96)00545-6
  19. Nishino, H., Kitagawa, K., Fujiki, H., Iwashima, A. Berberine sulfate inhibits tumor-promoting activity of teleocidin in two-stage carcinogenesis on mouse skin. Oncology 43(2):131-134, 1986 https://doi.org/10.1159/000226349
  20. Lau, C.W., Yao, X.Q., Chen, Z.Y., Ko, W.H., Huang, Y. Cardiovascular action of berberine. Cardiovascular Drug Review 19, 234-244, 2001
  21. Sack, R.B., Froehlich, J.L. Berberine inhibits intestinal secretory response of Vibrio chlerae and Escherichia coli enterotoxins. Infection and Immunity 35, 471-475, 1982
  22. Zeng, X., Zeng, X. Relationship between the clinical effects of berberine on severe congestive heart failure and its concentration in plasma studied by HPLC. Biomedical Chromatography 13(7):442-444, 1999 https://doi.org/10.1002/(SICI)1099-0801(199911)13:7<442::AID-BMC908>3.0.CO;2-A
  23. Ko, W.H., Yao, X.O., Lau, C.W., Law, W.I., Chen, Z.Y., Kwok, W., Ho, K., Huang, Y. Vasorelaxant and antiproliferative effect of berberine. European Journal of Pharmacology 399, 187-196, 2000 https://doi.org/10.1016/S0014-2999(00)00339-3
  24. Chun, Y.T., Yip, T.T., Lau, K.L., Kong, Y.C., Sankawa, U. A biochemical study on the hypotensive effect of berberine in rats. General Pharmacology 10(3), 177-182, 1979 https://doi.org/10.1016/0306-3623(79)90085-5
  25. Kang, D.G., Sohn, E.J., Kwon, E.K., Han, J.H., Oh, H., Lee, H.S. Effects of berberine on angiotensin-converting enzyme and NO/cGMP system in vessels. Vascular Pharmacology 39(6):281-286, 2002 https://doi.org/10.1016/S1537-1891(03)00005-3
  26. Kimura, M., Thoma, M., Kikuchi, T. The constituents of Convallaria. II. The isolation of desglucocheirotoxin. Japanese Journal of Pharmacology 82, 1320-1323, 1962
  27. Kimura, M., Thoma, M., Yoshizawa, I. The constituents of Convallaria. II. The isolation of convallasaponin-A, -B, -C. Chemical & Pharmaceutical Bulletin 14(1):50-55, 1966 https://doi.org/10.1248/cpb.14.50
  28. Kimura, M., Thoma, M., Yoshizawa, I. The constituents of Convallaria. VII. Structure of convallagenin-A. Chemical & Pharmaceutical Bulletin 15(8):1204-1211, 1967 https://doi.org/10.1248/cpb.15.1204
  29. Wolfgang, K., Brigitte, K., Kurt, J., Helmut, R. Zur biogenese von strophanthidin-glycosiden: Convallatoxol als vorstufe von convallatoxin in Convallaria majalis. Phytochemistry 13, 1805-1808, 1974 https://doi.org/10.1016/0031-9422(74)85094-6
  30. Ozaki, H., Nagase, H., Urakawa, N. Interaction of palytoxin and cardiac glycosides on erythrocyte membranes and $Na^+-K^+$ ATPase. European Journal of Biochemistry 152, 475-480, 1985 https://doi.org/10.1111/j.1432-1033.1985.tb09221.x