Different Gene Expression on Human Blood by Administration of OLT-2

OLT-2의 복용에 의한 인간 혈중 유전자 발현 변화

  • 차민호 (한국한의학연구원 의료연구부) ;
  • 문진석 (한국한의학연구원 의료연구부) ;
  • 전병훈 (원광대학교 한의과대학) ;
  • 윤용갑 (원광대학교 한의과대학) ;
  • 윤유식 (한국한의학연구원 의료연구부)
  • Published : 2006.08.25

Abstract

This study was performed to investigate genes which are differently expressed in human blood by administrating of OLT-2. OLT-2 was medical precipitation composed of three medicinal herbs, Ginseng Radix, Astragali Radix, Glycyrrhizae Radix, and anti-leukemia effect of it was evaluated from Byung Hun Jeon of Wonkwang University this study was approved by Institutional Review Board of Korea Institute of Oriental Medicine (Taejeon, Korea) and four male subjects participated in this study. Gene expressions were evaluated by cDNA chip, in which 24,000 genes were spotted. Hierarchical cluster and biological process against the genes, which expression changes were more than 1.6 fold, were constructed by cluster 3.0 providing Stanford University and EASE(http://apps1 .maid.nih.gov/DAVID). Five groups were clustered according to their expression patterns. Group A contained gene decreased by OLT-2 and increased genes by OLT-2 were involved in Group B, C, D. In biological process, expression of genes involved in cytokine or cell calcium signaling, such as interleukin 18 and G-protein beta 4 were increased, but protein tyrosine phosphatase receptor type c, which function is cell adhesion between antigen-presenting cell and T or B-cell, was decreased by OLT-2. This study provides the most comprehensive available survey of gene expression changes in response to anti-leukemia effect of OLT-2 in human blood.

Keywords

References

  1. 비호지킨 림프종(C82-C85)의 사망률 추이, 1983-2004년, 통계청 사망원인통계, 통계청, 2006
  2. 한국중앙암등록본부.보건복지부, 한국중앙암등록 사업 연례 보고서(2002. 1. - 2002. 12.), 2003
  3. Kerkela, R., Grazette, L., Yacobi, R., Iliescu, C., Patten, R., Beahm, C., Walters, B., Shevtsov, S., Pesant, S., Clubb, F.J., Rosenzweig, A., Salomon, R.N., Van Etten, R.A., Alroy, J., Durand, J.B., Force, T. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 23, 2006. (in press)
  4. Wargovich, M.J. Colon cancer chemoprevention with ginseng and other botanicals. J Korean Med Sci. 16, S81-S86, 2001 https://doi.org/10.3346/jkms.2001.16.S.S81
  5. Fukushima, S., Wanibuchi, H., Li, W. Inhibition by ginseng of colon carcinogenesis in rats. J Korean Med Sci. 16, S75-S80, 2001 https://doi.org/10.3346/jkms.2001.16.S.S75
  6. Matsunaga, H., Katano, M., Yamamoto, H., Fujito, H., Mori, M., Takata, K. Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chem Pharm Bull. 38, 3480-3482, 1990 https://doi.org/10.1248/cpb.38.3480
  7. Matsunaga, H., Katano, M., Saita, T., Yamamoto, H., Mori, M. Potentiation of cytotoxicity of mitomycin C by a polyacetylenic alcohol, panaxytriol. Cancer Chemother Pharmacol. 33, 291-297, 1994 https://doi.org/10.1007/BF00685902
  8. Lee, S.J., Sung, J.H., Lee, S.J., Moon, C.K., Lee, B.H. Antitumor activity of a novel ginseng saponin metabolite in human pulmonary adenocarcinoma cells resistant to cisplatin. Cancer Lett. 144, 39-43, 1999 https://doi.org/10.1016/S0304-3835(99)00188-3
  9. Wu, X.G., Zhu, D.H., Li, X. Anticarcinogenic effect of red ginseng on the development of liver cancer induced by diethylnitrosamine in rats. J Korean Med Sci. 16, S61-S65, 2001 https://doi.org/10.3346/jkms.2001.16.S.S61
  10. Han, H.J., Yoon, B.C., Lee, S.H., Park, S.H., Park, J.Y., Oh, Y.J., Lee, Y.J. Ginsenosides inhibit EGF-induced proliferation of renal proximal tubule cells via decrease of c-fos and c-jun gene expression in vitro. Planta Med. 68, 971-974, 2002 https://doi.org/10.1055/s-2002-35659
  11. Nakata, H., Kikuchi, Y., Tode, T., Hirata, J., Kita, T., Ishii, K., Kudoh, K., Nagata, I., Shinomiya, N. Inhibitory effects of ginsenoside Rh2 on tumor growth in nude mice bearing human ovarian cancer cells. Jpn J Cancer Res. 89,733-740, 1998 https://doi.org/10.1111/j.1349-7006.1998.tb03278.x
  12. Liu, W.K., Xu, S.X., Che, C.T. Anti-proliferative effect of ginseng saponins on human prostate cancer cell line. Life Sci. 67, 1297-1306, 2000 https://doi.org/10.1016/S0024-3205(00)00720-7
  13. Wakabayashi, C., Murakami, K., Hasegawa, H., Murata, J., Saiki, I. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun. 246, 725-730, 1998 https://doi.org/10.1006/bbrc.1998.8690
  14. Lee, S.J., Ko, W.G., Kim, J.H., Sung, J.H., Moon, C.K., Lee, B.H. Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease. Biochem Pharmacol. 60, 677-685, 2000 https://doi.org/10.1016/S0006-2952(00)00362-2
  15. Lin, J., Dong, H.F., Oppenheim, J.J., Howard, O.M. Effects of astragali radix on the growth of different cancer cell lines. World J Gastroenterol. 9, 670-673, 2003 https://doi.org/10.3748/wjg.v9.i4.670
  16. Kurashige. S,, Akuzawa, Y., Endo, F. Effects of astragali radix extract on carcinogenesis, cytokine production, and cytotoxicity in mice treated with a carcinogen, N-butyl-N'-butanolnitrosoamine. Cancer Invest. 17,30-35. 1999 https://doi.org/10.1080/07357909909011714
  17. Jo, E.H., Kim, S.H., Ra, J.C., Kim, S.R., Cho, S.D., Jung, J.W., Yang, S.R., Park, J.S., Hwang, J.W., Aruoma, O.I., Kim, T.Y., Lee, Y.S., Kang, K.S. Chemopreventive properties of the ethanol extract of chinese licorice (Glycyrrhiza uralensis) root: induction of apoptosis and G1 cell cycle arrest in MCF-7 human breast cancer cells. Cancer Lett. 230, 239-247, 2005 https://doi.org/10.1016/j.canlet.2004.12.038
  18. Kanazawa, M., Satomi, Y., Mizutani, Y., Ukimura, O., Kawauchi, A., Sakai, T., Baba, M., Okuyama, T., Nishino, H., Miki, T. Isoliquiritigenin inhibits the growth of prostate cancer. Eur Urol. 43, 580-586, 2003 https://doi.org/10.1016/S0302-2838(03)00090-3
  19. Sheela, M.L., Ramakrishna, M.K., Salimath, B.P. Angiogenic and proliferative effects of the cytokine VEGF in Ehrlich ascites tumor cells is inhibited by Glycyrrhiza glabra. Int Immunopharmacol. 6, 494-498, 2006 https://doi.org/10.1016/j.intimp.2005.07.002
  20. Dang, A.M., Phillips, J.A., Lin, T., Raveche, E.S. Altered CD45 expression in malignant B-1 cells. Cell Immunol. 169, 196-207, 1996 https://doi.org/10.1006/cimm.1996.0110
  21. Nakamura, A., Tsurusawa, M., Kato, A., Taga, T., Hatae, Y., Miyake, M., Mimaya, J., Onodera, N., Watanabe, A., Watanabe, T., Kanegane, H., Matsushita, T,, Iwai, A., Hyakuna, N., Gushi, K., Kawakami, T., Sekine, I., Izichi, O., Asami, K., Kikuta, A., Tanaka, A., Fujimoto, T. Prognostic impact of CD45 antigen expression in high-risk, childhood B-cell precursor acute lymphoblastic leukemia. Leuk Lymphoma. 42, 393-398, 2001 https://doi.org/10.3109/10428190109064596
  22. Taetle, R., Ostergaard, H., Smedsrud, M., Trowbridge, I. Regulation of CD45 expression in human leukemia cells. Leukemia. 5, 309-14, 1991
  23. Fukao, T., Matsuda, S., Koyasu, S. Synergistic effects of IL-4 and IL-18 on IL-12-dependent IFNgamma production by dendritic cells. J Immunol. 164, 64-71, 2000 https://doi.org/10.4049/jimmunol.164.1.64
  24. Schindler, H., Lutz, M.B., Rollinghoff, M., Bogdan, C. The production of IFN-gamma by IL-12/IL-18-activated macrophages requires STAT4 signaling and is inhibited by IL-4. J Immunol. 166, 3075-3082, 2001 https://doi.org/10.4049/jimmunol.166.5.3075
  25. Munder, M., Mallo, M., Eichmann, K., Modolell, M. Murine macrophages secrete interferon gamma upon combined stimulation with interleukin (IL)-12 and IL-18, a novel pathway of autocrine macrophage activation. J Exp Med. 187, 2103-2108, 1998 https://doi.org/10.1084/jem.187.12.2103
  26. Yoshimoto, T., Takeda, K., Tanaka, T., Ohkusu, K., Kashiwamura, S., Okamura, H., Akira, S., Nakanishi, K. IL-12 upregulates IL-18 receptor expression on T cells, Th1 cells, and B cells, synergism with IL-18 for IFN-gamma production. J Immunol. 161, 3400-3407, 1998
  27. Yang, J., Zhu, H., Murphy, T.L., Ouyang, W., Murphy, K.M. IL-18-stimulated GADD45 beta required in cytokine-induced, but not TCR-induced, IFNgamma production. Nat Immunol. 2, 157-164, 2001 https://doi.org/10.1038/84264
  28. Yu, J.J., Tripp, C.S., Russell, J.H. Regulation and phenotypeof an innate Th1 cell: role of cytokines andthe p38 kinase pathway. J Immunol. 171, 6112-6118, 2003 https://doi.org/10.4049/jimmunol.171.11.6112
  29. Akamatsu, S., Arai, N., Hanaya, T., Arai, S., Tanimoto, T., Fujii, M., Kohno, K., Micallef, M.J., Ikeda, M., Kurimoto, M. Antitumor activity of interleukin-18 against the murine T-cell leukemia/lymphoma EL-4 in syngeneic mice. J Immunother. 25, S28-34, 2002 https://doi.org/10.1097/00002371-200203001-00005
  30. Salesse, S., Lagarde, V., Ged, C., de Verneuil, H., Reiffers, J., Mahon, F.X. Retroviral coexpression of IFN-alpha and IFN-gamma genes and inhibitory effects in chronic myeloid leukemia cells. J Interferon Cytokine Res. 20, 577-587, 2000 https://doi.org/10.1089/10799900050044778
  31. Ruiz-Velasco, V., Ikeda, S.R., Puhl, H.L. Cloning, tissue distribution, and functional expression of the human G protein beta 4-subunit. Physiol Genomics. 8, 41-50, 2002 https://doi.org/10.1152/physiolgenomics.00085.2001
  32. Kue, P.F., Daaka, Y. Essential role for G proteins in prostate cancer cell growth and signaling. J Urol. 164, 2162-2167, 2000 https://doi.org/10.1016/S0022-5347(05)66990-X