Involvement of ERK1/2 and JNK Pathways in 17${\beta}-estradiol$ Induced Kir6.2 and SK2 Upregulation in Rat Osteoblast-like Cells

  • Kim, Jung-Wook (Department of Physiology, School of Medicine, Kyungpook National University) ;
  • Yang, Eun-Kyoung (Department of Physiology, School of Medicine, Kyungpook National University)
  • 발행 : 2006.08.30

초록

The functional expression of potassium $(K^+)$ channels has electrophysiologically been studied in bone cells from several species, however, their identity and regulation of gene expressions in bone cells are not well known. In the present study, to investigate how $K^+$ channel expressions are regulated by estrogen, we measured changes of transcript levels of various $Ca^{2+}$-activated ($K_{Ca}$) and ATP-sensitive $K^+$ channels in rat osteoblastic ROS 17/2.8 cells after treatment with estrogen. Application of 17${\beta}$-estradiol $(E_2)$ for 24 h and 48 h increased mRNA and protein expressions of inwardly rectifying $K^+$ channel (Kir) 6.2 and type 2 small conductance $K_{Ca}$ channel (SK2), respectively. Combined treatment of cells with 17${\beta}-E_2$ and ICI 182,780, a pure antiestrogen, suppressed 17${\beta}-E_2$-induced alterations of SK2 and Kir6.2 mRNA levels. In addition, treatment of cells with U0126, a specific inhibitor of extracellular receptor kinases (ERK)1/2, and SP600125, a specific inhibitor of c-jun N-terminal kinase (JNK) blocked the enhancing effects of 17${\beta}-E_2$ on SK2 and Kir6.2 protein expressions. On the other hand, blocking of p38 mitogen-activated protein kinase had no effect. Taken together, these results indicate that 17${\beta}-E_2$ modulates SK2 and Kir6.2 expressions through the estrogen receptor, involving ERK1/2 and JNK activations.

키워드

참고문헌

  1. Abou-Samra AB, Juppner H, Force T, Freeman MW, Kong XF, Schipani E, Urena P, Richards J, Bonventre JV, Potts JT Jr, Kronenberg HM, Segre GV. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormonerelated peptide from rat osteoblast-like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol trisphosphates and increases intracellular free calcium. Proc Natl Acad Sci USA 89: 2732-2736, 1992 https://doi.org/10.1073/pnas.89.7.2732
  2. Bosch MA, Kelly MJ, Ronnekleiv OK. Distribution, neuronal colocalization, and 17beta-E2 modulation of small conductance calcium-activated K(+) channel (SK3) mRNA in the guinea pig brain. Endocrinology 143: 1097-1107, 2002 https://doi.org/10.1210/en.143.3.1097
  3. Chae KS, Dryer SE. The p38 mitogen-activated protein kinase pathway negatively regulates $Ca^{2+}$-activated $K^+$ channel trafficking in developing parasympathetic neurons. J Neurochem 94: 367-379, 2005 https://doi.org/10.1111/j.1471-4159.2005.03201.x
  4. Chesnoy-Marchais D, Fritsch J. Chloride current activated by cyclic AMP and parathyroid hormone in rat osteoblasts. Pflugers Arch 415: 104-114, 1989 https://doi.org/10.1007/BF00373147
  5. Chesnoy-Marchais D, Fritsch J. Potassium currents and effects of vitamin D-3 metabolites and cyclic GMP in rat osteoblastic cells. Biochim Biophys Acta 1148: 239-248, 1993 https://doi.org/10.1016/0005-2736(93)90135-M
  6. Cole WC, Clement-Chomienne O. ATP-sensitive $K^+$ channels of vascular smooth muscle cells. J Cardiovasc Electrophysiol 14: 94- 103, 2003 https://doi.org/10.1046/j.1540-8167.2003.02376.x
  7. Cooke PS, Buchanan DL, Lubahn DB, Cunha GR. Mechanism of estrogen action: lessons from the estrogen receptor-alpha knockout mouse. Biol Reprod 59: 470-475, 1998 https://doi.org/10.1095/biolreprod59.3.470
  8. Davidson RM. Membrane stretch activates a high-conductance $K^+$ channel in G292 osteoblastic-like cells. J Membr Biol 131: 81- 92, 1993 https://doi.org/10.1007/BF02258536
  9. Dixon SJ, Aubin JE, Dainty J. Electrophysiology of a clonal osteoblast- like cell line: evidence for the existence of a $Ca^{2+}$-activated $K^+$ conductance. J Membr Biol 80: 49-58, 1984 https://doi.org/10.1007/BF01868689
  10. Ghanshani S, Wulff H, Miller MJ, Rohm H, Neben A, Gutman GA, Cahalan MD, Chandy KG. Up-regulation of the IKCa1 potassium channel during T-cell activation. Molecular mechanism and functional consequences. J Biol Chem 275: 37137-37149, 2000 https://doi.org/10.1074/jbc.M003941200
  11. GU Y, Preston M, El-Haj AJ, Zamponi GW, Publicover SJ. Three types of $K^+$ currents in murine osteocyte-like cells (MLO-Y4). Bone 28: 29-37, 2001 https://doi.org/10.1016/S8756-3282(00)00439-7
  12. Kawase T, Burns DM. Calcitonin gene-related peptide stimulates potassium efflux through adenosine triphosphate-sensitive potassium channels and membrane hyperpolarization in osteoblastic UMR106 cells. Endocrinology 139: 3492-3502, 1998 https://doi.org/10.1210/en.139.8.3492
  13. Kawase T, Howard GA, Roos BA, Burns DM. Calcitonin generelated peptide rapidly inhibits calcium uptake in osteoblastic cell lines via activation of adenosine triphosphate-sensitive potassium channels. Endocrinology 137: 984-990, 1996 https://doi.org/10.1210/en.137.3.984
  14. Kousteni S, Bellido T, Plotkin LI, O'Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 104: 719-730, 2001
  15. Manolagas SC, Kousteni S, Jilka RL. Sex steroids and bone. Recent Prog Horm Res 57: 385-409, 2002 https://doi.org/10.1210/rp.57.1.385
  16. Manolagas SC, Kousteni S. Perspective: nonreproductive sites of action of reproductive hormones. Endocrinology 142: 2200- 2204, 2001 https://doi.org/10.1210/en.142.6.2200
  17. Masayuki T, Caros GV, Ke D, Richard W, Takaaki A, Steven CH, Jason ZX. Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevisoocyte. Am J Physiol Renal Physiol 278: F659-F666, 2000 https://doi.org/10.1152/ajprenal.2000.278.4.F659
  18. Moreau R, Aubin R, Lapointe JY, Lajeunesse D. Pharmacological and biochemical evidence for the regulation of osteocalcin secretion by potassium channels in human osteoblast-like MG-63 cells. J Bone Miner Res 12: 1984-1992, 1997 https://doi.org/10.1359/jbmr.1997.12.12.1984
  19. Moreau R, Hurst AM, Lapointe JY, Lajeunesse D. Activation of maxi-K channels by parathyroid hormone and prostaglandin E2 in human osteoblast bone cells. J Membr Biol 150: 175-184, 1996 https://doi.org/10.1007/s002329900042
  20. Nadal A, Rovira JM, Laribi O, Leon-Quinto T, Andreu E, Ripoll C, Soria B. Rapid insulinotropic effect of 17$\beta$-estradiol via a plasma membrane receptor. FASEB J 12: 1341-1348, 1998 https://doi.org/10.1096/fasebj.12.13.1341
  21. Okabe K, Okamoto F, Kajiya H, Takada K, Soeda H. Estrogen directly acts on osteoclasts via inhibition of inward rectifier $K^+$ channels. Naunyn Schmiedebergs Arch Pharmacol 361: 610- 620, 2000 https://doi.org/10.1007/s002100000243
  22. Prouillet C, Maziere JC, Maziere C, Wattel A, Brazier M, Kamel S. Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway. Biochem Pharmacol 67: 1307-1313, 2004 https://doi.org/10.1016/j.bcp.2003.11.009
  23. Ranki HJ, Budas GR, Crawford RM, Davies AM, Jovanovic A. 17Beta-estradiol regulates expression of K(ATP) channels in H9c2 cells. J Am Coll Cardiol 40: 367-374, 2002 https://doi.org/10.1016/S0735-1097(02)01947-2
  24. Ravesloot JH, van Houten RJ, Ypey DL, Nijweide PJ. Identification of $Ca^{2+}$-activated $K^+$ channels in cells of embryonic chick osteoblast cultures. J Bone Miner Res 5: 1201-1210, 1990 https://doi.org/10.1002/jbmr.5650051203
  25. Rezzonico R, Cayatte C, Bourget-Ponzio I, Romey G, Belhacene N, Loubat A, Rocchi S, Van Obberghen E, Girault JA, Rossi B, Schmid-Antomarchi H. Focal adhesion kinase pp125FAK interacts with the large conductance calcium-activated hSlo potassium channel in human osteoblasts: potential role in mechanotransduction. J Bone Miner Res 18: 1863-1871, 2003 https://doi.org/10.1359/jbmr.2003.18.10.1863
  26. Rickard DJ, Subramaniam M, Spelsberg TC. Molecular and cellular mechanisms of estrogen action on the skeleton. J Cell Biochem Suppl 32-33: 123-132, 1999
  27. Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science 289: 1508-1514, 2000 https://doi.org/10.1126/science.289.5484.1508
  28. Ropero AB, Fuentes E, Rovira JM, Ripoll C, Soria B, Nadal A. Non-genomic actions of 17beta-oestradiol in mouse pancreatic beta-cells are mediated by a cGMP-dependent protein kinase. J Physiol 521: 397-407, 1999 https://doi.org/10.1111/j.1469-7793.1999.00397.x
  29. Salter DM, Wallace WH, Robb JE, Caldwell H, Wright MO. Human bone cell hyperpolarization response to cyclical mechanical strain is mediated by an interleukin-1beta autocrine/paracrine loop. J Bone Miner Res 15: 1746-1755, 2000 https://doi.org/10.1359/jbmr.2000.15.9.1746
  30. Seval Y, Cakmak H, Kayisli UA, Arici A. Estrogen-mediated regulation of p38 mitogen-activated protein kinase in human endometrium. J Clin Endocrinol Metab 91: 2349-2357, 2006 https://doi.org/10.1210/jc.2005-2132
  31. Simoncini T, Mannella P, Fornari L, Caruso A, Varone G, Genazzani AR. Genomic and non-genomic effects of estrogens on endothelial cells. Steroids 69: 537-542, 2004 https://doi.org/10.1016/j.steroids.2004.05.009
  32. Somjen D, Zor U, Kaye AM, Harell A, Binderman I. Parathyroid hormone induction of creatine kinase activity and DNA synthesis is mimicked by phospholipase C, diacylglycerol and phorbol ester. Biochim Biophys Acta 931: 215-223, 1987 https://doi.org/10.1016/0167-4889(87)90209-6
  33. Valverde MA, Rojas P, Amigo J, Cosmelli D, Orio P, Bahamonde MI, Mann GE, Vergara C, Latorre R. Acute activation of maxi-K channels (hSlo) by estradiol binding to the subunit. Science 285: 1929-1931, 1999 https://doi.org/10.1126/science.285.5435.1929
  34. Weskamp M, Seidl W, Grissmer S. Characterization of the increase in [$Ca^{2+}$](i) during hypotonic shock and the involvement of $Ca^{2+}$-activated $K^+$ channels in the regulatory volume decrease in human osteoblast-like cells. J Membr Biol 178: 11-20, 2000 https://doi.org/10.1007/s002320010010
  35. Wulfsen I, Hauber HP, Schiemann D, Bauer CK, Schwarz JR. Expression of mRNA for voltage-dependent and inward-rectifying $K^+$ channels in $GH_3$/$B_6$ cells and rat pituitary. J Neuroendocrinol 12: 263-272, 2000 https://doi.org/10.1046/j.1365-2826.2000.00447.x
  36. Yellowley CE, Hancox JC, Skerry TM, Levi AJ. Whole-cell membrane currents from human osteoblast-like cells. Calcif Tissue Int 62: 122-132, 1998 https://doi.org/10.1007/s002239900405
  37. Ypey DL, Ravesloot JH, Buisman HP, Nijweide PJ. Voltage-activated ionic channels and conductances in embryonic chick osteoblast cultures. J Membr Biol 101: 141-150, 1988 https://doi.org/10.1007/BF01872829
  38. Yukihiro S, Posner GH, Guggino SE. Vitamin D3 analogs stimulate calcium currents in rat osteosarcoma cells. J Biol Chem 269: 23889-23893, 1994