Open Channel Block of Kv3.1 Currents by Genistein, a Tyrosine Kinase Inhibitor

  • Choi, Bok-Hee (Department of Pharmacology, Chonbuk National University) ;
  • Park, Ji-Hyun (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Hahn, Sang-June (Department of Physiology, College of Medicine, The Catholic University of Korea)
  • Published : 2006.04.21

Abstract

The goal of this study was to analyze the effects of genistein, a widely used tyrosine kinase inhibitor, on cloned Shaw-type $K^+$ currents, Kv3.1 which were stably expressed in Chinese hamster ovary (CHO) cells, using the whole-cell configuration of patch-clamp techniques. In whole-cell recordings, genistein at external concentrations from 10 to $100{\mu}M$ accelerated the rate of inactivation of Kv3.1 currents, thereby concentration-dependently reducing the current at the end of depolarizing pulse with an $IC_{50}$ value of $15.71{\pm}0.67{\mu}M$ and a Hill coefficient of $3.28{\pm}0.35$ (n=5). The time constant of activation at a 300 ms depolarizing test pulses from -80 mV to +40 mV was $1.01{\pm}0.04$ ms and $0.90{\pm}0.05$ ms (n=9) under control conditions and in the presence of $20{\mu}M$ genistein, respectively, indicating that the activation kinetics was not significantly modified by genistein. Genistein $(20{\mu}M)$ slowed the deactivation of the tail current elicited upon repolarization to -40 mV, thus inducing a crossover phenomenon. These results suggest that drug unbinding is required before Kv3.1 channels can close. Genistein-induced block was voltage-dependent, increasing in the voltage range $(-20\'mV{\sim}0\'mV)$ for channel opening, suggesting an open channel interaction. Genistein $(20{\mu}M)$ produced use-dependent block of Kv3.1 at a stimulation frequency of 1 Hz. The voltage dependence of steady-state inactivation of Kv3.1 was not changed by $20{\mu}M$ genistein. Our results indicate that genistein blocks directly Kv3.1 currents in concentration-, voltage-, time-dependent manners and the action of genistein on Kv3.1 is independent of tyrosine kinase inhibition.

Keywords

References

  1. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262: 5592-5595, 1987
  2. Aniksztejn L, Catarsi S, Drapeau P. Channel modulation by tyrosine phosphorylation in an identified leech neuron. J Physiol 498 (Pt 1): 135-142, 1997 https://doi.org/10.1113/jphysiol.1997.sp021846
  3. Chang KL, Kung ML, Chow NH, Su SJ. Genistein arrests hepatoma cells at G2/M phase: involvement of ATM activation and upregulation of p21waf1/cip1 and Weel. Biochem Pharmacol 67: 717-726, 2004 https://doi.org/10.1016/j.bcp.2003.10.003
  4. Chiang CE, Chen SA, Chang MS, Lin CI, Luk HN. Genistein directly inhibits L-type calcium currents but potentiates cAMPdependent chloride currents in cardiomyocytes. Biochem Biophys Res Commun 223: 598-603, 1996 https://doi.org/10.1006/bbrc.1996.0941
  5. Choi BH, Choi JS, Jeong SW, Hahn SJ, Yoon SH, Jo YH, Kim MS. Direct block by bisindolylmaleimide of rat Kv1.5 expressed in Chinese hamster ovary cells. J Pharmacol Exp Ther 293: 634- 640, 2000
  6. Choi BH, Choi JS, Yoon SH, Rhie DJ, Min DS, Jo YH, Kim MS, Hahn SJ. Effects of norfluoxetine, the major metabolite of fluoxetine, on the cloned neuronal potassium channel Kv3.1. Neuropharmacology 41: 443-453, 2001 https://doi.org/10.1016/S0028-3908(01)00088-0
  7. Delpon E, Valenzuela C, Gay P, Franqueza L, Snyders DJ, Tamargo J. Block of human cardiac Kv1.5 channels by loratadine: voltage-, time- and use-dependent block at concentrations above therapeutic levels. Cardiovasc Res 35: 341-350, 1997 https://doi.org/10.1016/S0008-6363(97)00121-1
  8. Dubois JM, Rouzaire-Dubois B. Role of potassium channels in mitogenesis. Prog Biophys Mol Biol 59: 1-21, 1993
  9. Fadool DA, Holmes TC, Berman K, Dagan D, Levitan IB. Tyrosine phosphorylation modulates current amplitude and kinetics of a neuronal voltage-gated potassium channel. J Neurophysiol 78: 1563-1573, 1997 https://doi.org/10.1152/jn.1997.78.3.1563
  10. Grissmer S, Ghanshani S, Dethlefs B, McPherson JD, Wasmuth JJ, Gutman GA, Cahalan MD, Chandy KG. The Shaw-related potassium channel gene, Kv3.1, on human chromosome 11, encodes the type l $K^{+}$ channel in T cells. J Biol Chem 267: 20971- 2099, 1992
  11. Holmes TC, Fadool DA, Levitan IB. Tyrosine phosphorylation of the Kv1.3 potassium channel. J Neurosci 16: 1581-1590, 1996 https://doi.org/10.1523/JNEUROSCI.16-05-01581.1996
  12. Huang XY, Morielli AD, Peralta EG. Tyrosine kinase-dependent suppression of a potassium channel by the G protein-coupled m1 muscarinic acetylcholine receptor. Cell 75: 1145-1156, 1993 https://doi.org/10.1016/0092-8674(93)90324-J
  13. Jonas EA, Kaczmarek LK. Regulation of potassium channels by protein kinases. Curr Opin Neurobiol 6: 318-323, 1996 https://doi.org/10.1016/S0959-4388(96)80114-0
  14. Jonas EA, Knox RJ, Kaczmarek LK, Schwartz JH, Solomon DH. Insulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents. J Neurosci 16: 1645- 1658, 1996 https://doi.org/10.1523/JNEUROSCI.16-05-01645.1996
  15. Kaczmarek LK. Voltage-dependent potassium channels: minK and Shaker families. New Biol 3: 315-323, 1991
  16. Kanemasa T, Gan L, Perney TM, Wang LY, Kaczmarek LK. Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts. J Neurophysiol 74: 207-217, 1995 https://doi.org/10.1152/jn.1995.74.1.207
  17. Levitan IB. Modulation of ion channels by protein phosphorylation and dephosphorylation. Annu Rev Physiol 56: 193-212, 1994 https://doi.org/10.1146/annurev.ph.56.030194.001205
  18. Luneau CJ, Williams JB, Marshall J, Levitan ES, Oliva C, Smith JS, Antanavage J, Folander K, Stein RB, Swanson R, et al. Alternative splicing contributes to K+ channel diversity in the mammalian central nervous system. Proc Natl Acad Sci USA 88: 3932-3936, 1991
  19. Macica CM, Kaczmarek LK. Casein kinase 2 determines the voltage dependence of the Kv3.1 channel in auditory neurons and transfected cells. J Neurosci 21: 1160-1168, 2001 https://doi.org/10.1523/JNEUROSCI.21-04-01160.2001
  20. Peretz A, Sobko A, Attali B. Tyrosine kinases modulate $K^{+}$ channel gating in mouse Schwann cells. J Physiol 519 : 373-384, 1999 https://doi.org/10.1111/j.1469-7793.1999.0373m.x
  21. Perney TM, Marshall J, Martin KA, Hockfield S, Kaczmarek LK. Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. J Neurophysiol 68: 756- 766, 1992 https://doi.org/10.1152/jn.1992.68.3.756
  22. Siegelbaum SA. Channel regulation. Ion channel control by tyrosine phosphorylation. Curr Biol 4: 242-245, 1994 https://doi.org/10.1016/S0960-9822(00)00054-3
  23. Smirnov SV, Aaronson PI. Inhibition of vascular smooth muscle cell $K^{+}$ currents by tyrosine kinase inhibitors genistein and ST 638. Circ Res 76: 310-316, 1995 https://doi.org/10.1161/01.RES.76.2.310
  24. Snyders DJ, Yeola SW. Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ Res 77: 575-583, 1995 https://doi.org/10.1161/01.RES.77.3.575
  25. Su SJ, Chow NH, Kung ML, Hung TC, Chang KL. Effects of soy isoflavones on apoptosis induction and G2-M arrest in human hepatoma cells involvement of caspase-3 activation, Bcl-2 and Bcl-XL downregulation, and Cdc2 kinase activity. Nutr Cancer 45: 113-123, 2003 https://doi.org/10.1207/S15327914NC4501_13
  26. Su SJ, Yeh TM, Chuang WJ, Ho CL, Chang KL, Cheng HL, Liu HS, Cheng HL, Hsu PY, Chow NH. The novel targets for antiangiogenesis of genistein on human cancer cells. Biochem Pharmacol 69: 307-318, 2005 https://doi.org/10.1016/j.bcp.2004.09.025
  27. Szabo I, Gulbins E, Apfel H, Zhang X, Barth P, Busch AE, Schlottmann K, Pongs O, Lang F. Tyrosine phosphorylation-dependent suppression of a voltage-gated K+ channel in T lymphocytes upon Fas stimulation. J Biol Chem 271: 20465-20469, 1996 https://doi.org/10.1074/jbc.271.34.20465
  28. Valenzuela C, Delpon E, Franqueza L, Gay P, Perez O, Tamargo J, Snyders DJ. Class III antiarrhythmic effects of zatebradine. Time-, state-, use-, and voltage-dependent block of hKv1.5 channels. Circulation 94: 562-570, 1996 https://doi.org/10.1161/01.CIR.94.3.562
  29. Wang LY, Gan L, Forsythe ID, Kaczmarek LK. Contribution of the Kv3.1 potassium channel to high-frequency firing in mouse auditory neurones. J Physiol 509: 183-194, 1998 https://doi.org/10.1111/j.1469-7793.1998.183bo.x
  30. Wang Z. Roles of $K^{+}$ channels in regulating tumour cell proliferation and apoptosis. Pflugers Arch 448: 274-286, 2004 https://doi.org/10.1007/s00424-004-1258-5
  31. Washizuka T, Horie M, Obayashi K, Sasayama S. Genistein inhibits slow component delayed-rectifier K currents via a tyrosine kinase-independent pathway. J Mol Cell Cardiol 30: 2577- 2590, 1998 https://doi.org/10.1006/jmcc.1998.0815
  32. Weiser M, Vega-Saenz de Miera E, Kentros C, Moreno H, Franzen L, Hillman D, Baker H, Rudy B. Differential expression of Shawrelated $K^{+}$ channels in the rat central nervous system. J Neurosci 14: 949-972, 1994 https://doi.org/10.1523/JNEUROSCI.14-03-00949.1994
  33. Wijetunge S, Aalkjaer C, Schachter M, Hughes AD. Tyrosine kinase inhibitors block calcium channel currents in vascular smooth muscle cells. Biochem Biophys Res Commun 189: 1620-1623, 1992 https://doi.org/10.1016/0006-291X(92)90262-J
  34. Yu Z, Li W, Liu F. Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells. Cancer Lett 215: 159-166, 2004 https://doi.org/10.1016/j.canlet.2004.06.010