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Self-Learning Control of Cooperative Motion for Humanoid Robots

Yoon-Kwon Hwang, Kook-Jin Choi, and Dae-Sun Hong

Abstract: This paper deals with the problem of self-learning cooperative motion control for the
pushing task of a humanoid robot in the sagittal plane. A model with 27 linked rigid bodies is
developed to simulate the system dynamics. A simple genetic algorithm (SGA) is used to find the
cooperative motion, which is to minimize the total energy consumption for the entire humanoid
robot body. And the multi-layer neural network based on backpropagation (BP) is also
constructed and applied to generalize parameters, which are obtained from the optimization

procedure by SGA, in order to control the system.
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1. INTRODUCTION

Humans often use not only their arms but also their
entire bodies to generate efficient manipulation force.
Especially, the cooperative motion of the whole body
is needed to accomplish heavy work. If the static force
is insufficient to move a heavy object, a human
accumulates momentum by moving the body and then
generating a large impact to it. Accordingly, a human
can accomplish a given task successfully by the large
manipulation force which surpasses the maximum
static frictional force of the object. The application of
a humanoid robot rather than a human for a certain
work is more useful than an ordinary one whose limbs
are mounted on the ground, since its base has the
capability of translational and rotational movement
along and about all of the three Cartesian axes.
Therefore, significant manipulation force can be
generated and workspace can be enlarged through
position and orientation of its mainbody adjusted by
bending, stretching or moving its legs or arms. As a
result, a humanoid robot is expected to perform more
various and complicated works similar to those done
by a human. Fig. 1 shows the typical examples for
heavy works such as pushing a wall and twisting a
valve. Most of these works are accomplished by
proper control of the hand according to the
surrounding circumstances. For multi-limbed robots,
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Fig. 1. Typical examples of heavy works which
require the whole body cooperative motion;

pushing a wall (left) and twisting a valve
(right).

they experience the coordinative problem of the whole
body while carrying out the given tasks.

The related previous studies have been focused on
the manipulability of the robotic mechanism [1,2].
Zheng and Yin have studied an optimal mechanism to
coordinate the arm and mainbody configurations by
the linear programming technique, in that the moving
mainbody is much more expensive with respect to
energy consumption [3,4]. Coordination of both the
arm and leg was studied to avoid the degeneracy
problem and to enlarge the workspace by Su and
Zheng [5]. Recently, Yokokohji, Nomoto and
Yoshikawa have performed studies to evaluate a given
posture by the cost function using the nonlinear
programming [6]. A weighted combination of energy
consumption and load balancing was selected as a
criterion of optimization. Yoshida and co-workers
have proposed Jacobian matrices of the arm and leg to
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give the robot adaptability to force change [7].

The present paper concentrates on how to
coordinate the cooperative motion of the whole body
for the humanoid robot during the pushing task. The
approach taken here has been to search the position
and orientation of the mainbody and the position of
the hand in order to minimize summation of total joint
torques according to the change of manipulation force
using the simple genetic algorithm (SGA) [8,9].

Most of the optimization problems that we treat are
not only complicated but also insufficient in regards to
their reciprocal relationship between variables and a
priori knowledge for a function. Those methods could
be divided into derivative-based method and
derivative-free method. The typical examples of the
former are gradient method, Newton’s method and
conjugate gradient method, etc. However, they require
much complexity to obtain the solution in calculation,
although they could be calculated numerically.
Methods belonging to the latter are simplex method,
random  search, genetic algorithm,  genetic
programming, evolutionary strategies, and simulated
evolution, etc. Among them, the genetic algorithm is
the probability based on the optimization method
describing genetics and natural evolution numerically.
It has been applied to many optimization problems
because of the ability to search the global optimum
and the convenience of the application. Slow
convergence and many iterative computations,
however, make it more difficult to apply and require
high computational cost. The genetic algorithm has
some characteristics distinguished from existing
search algorithms. It can obtain a global solution in
the multi-modality or complicated, large search
environment, because it only requires the value of the
objective function. Even if SGA is a primary
algorithm proposed by Holland, it has still been
applied to numerous optimization problems, due to
the robustness in searching the solution. In particular,
it is useful to the humanoid robot of nonlinear
characteristics in that it is the hyper redundant multi-
body system close to 30 degrees of freedom.

For the application of SGA to control the real robot,
in the meanwhile, we should consider its
disadvantages, which are slow conjunction and
instability of solution. Accordingly, it is difficult to
apply the results of SGA in the real time control of a
robot. Therefore, we will introduce additionally the
perceptron learning law of the neural network in order
to overcome this limitation. Its performance learning
is presented by generalization of the algorithm. This
generalization, called backpropagation (BP), is used to
train the multi-layer network [10]. This network is
used to generalize parameters, which are the results
obtained by SGA, as a training set in this paper.

2. NUMERICAL MODELING

Body j

Fig. 2. Two contiguous bodies.

In order to model a humanoid robot, twenty seven
rigid bodies were used, linked by twenty-six revolute
joints based on Saika-3 [11]. Each leg and arm are
made of two rigid bodies, interconnected by a revolute
joint as shown in Fig. 2. A frame is attached to each
body and, to simplify matters, the origin is placed
over the respective center of mass. And the unit vector
%; 1is parallel to the rotational axis of joint i in the

frame of body i. This model captures the essential
characteristics of cooperative motion and is simple
enough to permit rapid simulations, reducing also the
search-space of the genetic algorithm, i.e. the
dynamics of this system can be written in various
ways. One of the fastest consists of describing the
dynamics of each rigid body per se, in a common
inertial frame, using an O(n) algorithm [12].

This way, the velocity and angular velocity ",
w; for the mass center of body i can be expressed

as follows:

Tsl
® r==5L0r

where . is called the 7 -th partial angular velocity
for i in ¥,, while ™ isthe r -th partial velocity

for i* in £,. By the differentiation of (1), the

acceleration and angular acceleration of the mass
center for body i can be expressed as the summation
of a term p; including 4, (r <i), a term Y3

including #, and remainder terms 4!, o) excluding
them as follows:
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The equations for each body are:
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Body 4

Body i

Fig. 3. Forces and moments applied to body /.
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where m; and /; are the mass and moment of

inertia for bodyi, F is the unit vector of 3x3,

F™ and N™ are the external force and moment
exerted on the mass center of body 4, and

TFLINTPFR BN are the internal forces and
moments exerted on joint [ and A, respectively (see
Fig. 3). Also, 'R, is the transformation matrix from
X, toward X,

Interaction with the ground was also modeled using
a three dimensional virtual spring-damper system in
the normal direction and viscous damping in the
tangential direction [13].

3. FORMULATION OF OPTIMIZATION

3.1. Optimization and control
A system with 26 joint actuators resulted from the

previous modeling. The control ebjective is to specify

a certain motion for the whole body and to control the

execution of this motion. The choice of the control

method is guided by:

* The desire to achieve a control adaptable to new
requisites such as different motions, minimization
of effort, etc.

o The complexity of the system’s dynamics, strongly
nonlinear.

» The use of minimal a priori information.

These reasons, mainly the last one, suggested the use

of seif-learning techniques from the so-called area of

‘Intelligent Control’. To have a better idea of the

dimension of the search-space associated with the

present problem, assume that the objective is to
specify one second of input to the 26 actuators, with
an update frequency of 10Hz. Assume further, to
simplify the analysis, that the dynamic range of each
actuator is reduced to 5 discrete values. This way, it is
necessary, for each second, to determine a set of 260

values, from a universe of (526)10 ~ 508! possible

combinations, Therefore, it seemed that the use of
genetic algorithm for optimization is appropriate.

3.2, Performance criterion

In the case of the humanoid robot, which has
capacity of locomotion, its mainbody has additional
motion freedom introduced by its limbs. The limbs
can thus afford to pose the adequate configuration
corresponding to the external force, Generally, for
example, when a human is doing work using an arm,
he tends te choose spontaneously the posture that will
minimize the potential energy expenditure in order to
avoid joint fatigue. Robots should not also exceed the
joint torque limit to avoid damage on the actuators
during a task. The serial connection of the legs is
more powerful than those of the arm. Weight of the
arm, thus, is negligible in comparison with that of the
trunk or leg. This implies that it is not possible to
generate the large manipulation force by using the arm
only, but a designed work can be carried out
successfully by the distribution of surplus joint torque
of legged limbs generated through adjusting the
mainbody and legged limbs. Accordingly, we propose
the optimized cooperative motion to minimize total
joint torques with a constraint of which each joint
torque is generating within range of its maximum
limit. As a result, a robot is able to have a margin
equivalent to total surplus torque with respect to
initial configuration of the robot for external force,
and to enlarge the range of work. In relation to this
point, we adopt the objective function, which is to
minimize summation of total joint torques for
cooperative motion, as the performance criterion in
this paper,

It is well known that for an ordinary manipulator
whose base is fixed on the ground, the equation of
motion is t=J(9)TF , where 1 is the applied joint
torque of the limb, F is the external force exerted on
the origin of the end-limb, and ./(8) is the Jacobian
matrix which relates the velocity of the end-effector to
the angular velocities of joints. Apparently, Jacobian
matrix of the serial comnection is necessary to
understand the relation between its behavior and
external force. Fig. 4 illustrates configuration of
numerical model during pushing work. Notice that the
inertia frame is Z;, the positions of the center of
gravity and hand are Cg, C, and the orientation of
mainbody about y axis is O, designated in X,

respectively. To evaluate how far the current joint
torque is from the torque limit, the following index is
introduced:

Z= i}r,»r,.,m b (i=1~26), (6)

i=]
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Fig. 4. Configuration of humanoid robot during the
pushing task.

where 1, and =t denote the current and

i i,max

maximum joint torques of i -th in limbs, respectively.
The objective function denoted by F(x) can be
obtained by transformation of (6) in order to take the
form , of maximization with a positive value in the
optimization process as follows:

2]. %)

It is unnecessary to change this object function
according to the change of the body configuration for
other tasks such as twisting a valve and lifting a box,
and so on. The following system boundary constraints,
however, should be changed according to the
characteristics of work and/or environment appropri-
ately.

F) = 321100, 0
i=1

3.3. Definition of system boundary
To obtain t(x);, of (7), however, constraints for

system boundaries should be defined through analysis
of motion expected in advance. They are expressed in
the sagittal plane as follows:

Q={x|xP<x<x@) e, )

where Q is the solution space of the 26th-order
vector which is composed of the inverse kinematics,

and a subset of R”. Q is restricted by the values of
lower limited vector x*) and upper limited vector
AU for x=[0g, Cg, Cg; Cp]. x€Q

all of the imposed constraints, which is known as the

feasible solution. Tts ranges are shown in Table 1.

To search the optimal solution of (7) in the imposed
solution space, in the meanwhile, we must consider
the following three terms:

(1) The degeneracy situation can be avoided. For an
ordinary robot arm or leg with six or seven
degrees of freedom, degeneracy happens when
its Jacobian matrix becomes singular. A multi-
limbed robot, however, can adjust the position
and orientation of the mainbody to keep the arm
or leg away from a degeneracy status. Therefore,
the robot should not move over the limit of joint
angle. Bach joint of the robot has a certain
motion range. If some of the joints reach the
upper or lower limit of that range during the task,
the robot might lose its balance and fall down.
Therefore, it is preferable that each joint has the
certain margin from the upper and lower bounds
of motion range (see Fig. 5) by the geometric
condition of the robot as follows:

satisfied

0, <8 <6, 9)

i,min = i,max?

where 0; denotes the angle of i-th joint, and
8 and 9,

i,min
respectively.

2) A robot should not exceed the maximum limited
joint torque to avoid damage from occurring on
the actuators. Therefore, another constraint is
necessary as follows:

i max are its upper and lower limits,

Ti,min < T < Ti,max’ (10)

where T, ,,, is set as shown in Table 2 based

Table 1. Ranges of feasible regions for constraints.

Constraint Xinic ey »)

Orientation of the center of gravity about y-axis g, [°] 0 230 30
Position of the center of gravity along x-axis Cg, [m] 0.15 0.30 2.0
Position of the center of gravity along z-axis Cg, [m] 0.90 0.75 1.05
L?osiﬁon of the hand from the center of gravity along z-axis C,, [m] 0.83 0.68 0.98
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Fig. 5. Joint angle limits.

Table 2. The values of maximum limited joint torque.

Joint Max. torque limit [Nm]
Arm Shoulder, Elbow 36.1
Wrist 10.4
Leg Hip, Ankle 189.8
Knee 227.8
on Saika-3.

(3) The stability of the system should be sustained.
The typical way to evaluate the stability of the
locomotion system is ZMP (Zero Moment Point),
which is defined as a point on the ground that the
summation of all moments generated at each
body by inertial and gravitational forces becomes
zero. If there is no consideration given to stability,
a robot easily loses its balance and topples over.
This scheme is considered under the condition of
which no slip occurs between the foot and the
ground. The equilibrium of force and moment is
expressed in the sagittal plane as follows:

NcoG = Im(Chz = Ci2) = f1:Ca

11

_fﬁcCGz +ffzxzmp’ ( )

Mg =[5 + fh> (12)
ME = fg + fi (13)

where N¢gg is the moment occurring around the
center of gravity, M is the total mass of the robot,

Jue» Juzs Sp» and f are forces generated

on hands and feet along x and z directions,
respectively (see Fig. 4). If there is no slip
between floor and foot, reaction force and
moment are given as follows:

I =T (14)
NcoG = JixCrz = JpzCe + FeXzmp- (15)

mp 1S Obtained as follows:

Xemp = —-fhxchz + fthhxffz' (16)

From (15), x,

In order not to generate N-pg, the range of

ZMP in the feasible region should be satisfied in
the interval as follows:

xzmp,min < xzmp < xzmp,max . (17)

4. OPTIMIZATION USING GENETIC
ALGORITHM

Although the various algorithms deforming and
developing SGA have been developed so far, those
mechanisms are basically equal to SGA, in terms of
including factors such as encoding of parameter,
generation of initial individual population, use of
genetic operator, and evaluation of fitness for an
individual in the population, etc. [8,14]. The reason is
that effects of these factors are dominant in the
performance of genetic algorithms. In this Section, we
will describe the procedure applying SGA to the
numerical model of the humanoid robot in more detail.

4.1. Encoding of parameter

The genetic operators and fitness are performed in
two spaces of coding based on the binary string and
the solution based on parameters. To represent points
in the search space, each range of feasible region for
constraints as shown in Table 1 is transformed to
natural parameter called string or chromosome in the
coding space. Fig. 6 shows the procedure that
transforms constraint x from the vector of binary
string s into the vector of chromosome length /. The

constraint x; is obtained from range of feasible
region, the binary string s; is calculated by binary
encoding of x;, and then, the chromosome length /,
is obtained by the following equation:

I, >log, [(| A =5 prod +1} (i=1~4),(18)

where the resolution of digit for each parameter is
d; =(0,0,0,0). From (18) and Table 1, total length of
chromosomes / becomes 21-bit.

X X2 X5 | Xe
X ‘ 60 30 30 30
: S1 Y 83 S4
§ 1100 11000 11000 11000
h h 18] Ia
)
6 5 5 5

Fig. 6. Binary encoding s and chromosome length
! for real vector x.
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4.2. Generation of initial population

The initial population must perform the simulated
evolution through the genetic operators. The
population takes over the role of integral memory
while evolving individuals. The population, denoted
by P(k), in k-th generation is defined as a set of

individuals for the number of N :
P(k) =[s51(k), s20k), -, s 5 (K)], (19

* where s;(k) is a point in search-space as i -th
chromosome and N(>1) is the population size. The
initial population P(0) is generated by the random

initialization method. This method is used to initialize
the chromosome as a binary constant of which the
number of N/ is generated by the random number
generator. Accordingly, total bit number becomes
50x21=1050 by setting the population size N =50
in this paper.

4.3. Genetic operators
4.3.1 Reproduction

In the evolutionary procedure from a population of
current generation P(k) to a population of next

generation P(k +1) through the genetic operators,

two temporary populations 1—’(k+1), IND(k+1) are

created, respectively. Especially, the former is called
the mating pool. The reproduction selects individuals

in P(k) and creates F(k+1). This selection has

the characteristic to increase the selection probability
in the total population. Among reproduction methods,
the roulette wheel selection is well known in SGA.
However, it has the disadvantage to not select the
fittest certainly in the procedure of selection because
of the probabilistic attribute. As a result, the optimized
individual of current generation might be eliminated
in the subsequent generation. The elimination of the
optimized individual causes depression of search by
loss of valuable characteristics of the chromosome.
Accordingly, the elitist strategy is also introduced in
order to preserve the best individual. Its procedure is
to evaluate P(k), to check the survival of the best

individual, and then, to swap the saved one with the
weakestin P(k), if the best one is destroyed.

4.3.2 Crossover
Crossover is to select the parent chromosome

arbitrarily from F(k+l), and to generate offspring

by changing and binding of each bit from the
crossover point in order to search the new point in a
search-space. Among crossover methods, the one-
point crossover is the most simple and well known as
the genetic operator in SGA. Its procedure is divided
into three steps during one cycle; (1) select two

chromosomes randomly from F(k +1), (2) determine
whether they will crossover at a randomly generated
crossover point based on the crossover rate P., (3)

copy the offspring into P(k+1). When P, is set
highly, crossover will occur frequently. The number of
chromosomes generated by crossover is AN =

0.8x50 = 40.

4.3.3 Mutation

Mutation is a mechanism by which the
chromosome is to escape from a suboptimal solution
or dead point during the simulated evolution by the
operations of selection and crossover. Simple
mutation is a typical method in SGA. Its procedure is
divided into three steps; (1) get one bit in the
population, (2) decide whether it will mutate or not for

a selected bit based on the mutation rate P,, (3)
copy the bit into the new population. When £, is set

high, a mutation will occur easily. The number of bits
generated by the mutation at each generation is
P,NI=0.01x50x35=17.5.

4.4. Evaluation of fitness

When the new population is created by
reproduction, crossover and mutation, fitness of
individuals has been evaluated by the calculation of
the objective function. Accordingly, an individual that
has higher value of fitness should receive a lot of
compensation. The fitness function f(x) is described
by a form of maximization with a positive value as
follows:

J(x)= F(x)+eP(x) - . (20)

In (20), the penalty function P(x) is:
2 +
P(x)=2 w;gj(x), @n
j=

where w; is the value of weight, and gj- (x) is the

function to satisfy the following condition:

g;(x), xisinfeasible solution,

g5 (x) ={

0, x is feasible solution.

By imposing the penalty function, it is possible to
transform the optimization problem without
constraints when the algorithm searches the feasible
region in the calculation of the fitness function. If
Jacobian matrix becomes singular or ZMP is not
located within the stable region generated by the
random generator, the value of penalty finction is
imposed to the fitness function. Here, the constants
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are set e=~1 and y=-12 in order to satisfy the
relation of f(x)>0 as small as possible.

4.5. Termination condition

When individuals are going to converge toward the
solution, most individuals make it to the next
generation without change of characteristics.
Accordingly, it is very important to determine the
accurate termination condition in order to save the
computation time. Therefore, we adopt the limitation
of the maximum generation number and comparison
of maximum fitness value and average fitness value.
The iteration is terminated if the average fitness value

Read initial parameters

Start
«——————————  Cc_ini, Ch_init, OG_inir, Oimit,

| xW, x¥ and N

I Calculate x

!

| Calculate s I

L Calculate / I

[
Y

| Create P(k) |

No

Yes
Y

Decoding binary to
real number Cg, Ch, and @c

!

Calculate 8
by inverse kinematics

.

Calculate ZMP

!

I Calculate J —' [ Simple mutation P(k+1) |
| Calculate T | [ One-point crossover P(k+1) —|

! i

I Calculate F(x) l Reproduce P(k+1) by roulette
l 'wheel selection and elitist strategy

| Calculate f(x) with penalty —l

No
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' Output CoprG, Coprh, and Copr.G I

!

End

Fig. 7. Flow chart for procedure of simulated
evolution.

is over 70% of the maximum fitness value when the
iteration number reaches the maximum generation
number. In this research, the number of maximum
generation, M is set as 100 experimentally.

5. RESULTS OF SIMULATED EVOLUTION

Fig. 7 shows the flow chart for the evolutionary
procedure to obtain the optimized parameters (O,

Cee» Cg, and Cj,) from the initial posture of the

humanoid robot by SGA. Each simulated evolution is
carried out at the manipulation forces p=5,
10,---,90N, respectively. To verify the convergence
of a solution satisfying the termination condition in
the simulated evolution, Fig. 8 shows comparison of
maximum fitness value and average fitness value for
each manipulation force.

Next, we present torques of main joints such as hip,
knee, shoulder, and elbow according to the change of
manipulation force in the initial and optimized
postures as shown in Fig. 10. Even though the
maximum joint torques of hip, knee and elbow do not
surpass those limited values during the task (see Figs.

50 — : : — N
Maximum fitness O
{ Average fitness X
40 ]
30 | 1
Sy
2 Txx%Pfgcosnnng monh
|51 )% X 5 X X x % 9 L
£ 20 x X X X X
6
10 ¢ 1
0 " | L t L n | '

10 20 30 40 50 60 70 80 90
Force [N]

Fig. 8. Comparison of maximum fitness value and
average fitness value.

40 — - - T - T
20 | ]
S
2 0F
=
[o "
-20 ]
P R S —
10 20 30 40 50 60 70 80 90
Force [N]

Fig. 9. Ratio of total joint torques.
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10(a), (b), and (d)), the joint torque of shoulder
surpasses its limit value at 75N in the initial posture
(see Fig. 10(c)). This means that the generated
maximum manipulation force might be restricted by
the shoulder joint, if the optimal configuration of the
robot is not considered while doing work. By the
proposed method, however, it can be enlarged until
90N. We also consider the efficiency of the proposed
method from another point of view. It is the energy
consumption for total joints of the robot. Fig. 9
presents the ratio of summation of total joint torques
calculated in the initial and optimized configuration of

the robot. It is calculated by ((ZGA [T | =2 i | T |)
12 e 1 T |)><100 %. Although the total energy

consumption of the robot increased occasionally in
certain cases according to the change of manipulation
force, it decreased about 10% in total.

Finally, Fig. 11 shows the change of O, Cg,

Cg,» and Cy, of optimal configuration calculated

from the initial configuration of the robot, according
to the change of the manipulation force.

6. MULTI-LAYER PERCEPTRON

In the previous sections, we laid the foundation for
optimal configuration of the entire body for the
pushing task of a humanoid robot based on the genetic
algorithm. The application of the genetic algorithm in
the control of the real robot, however, has a problem.
It requires too many arithmetic operations to search
the optimal solution. Accordingly, we will adopt the
perceptron learning law of neural network based on
the backpropagation algorithm, and then, generalize
the parameters (@g,, Cg., Cg,, and Cj,), which

were obtained from the optimization procedure by
SGA, as a training set in order to overcome this
limitation.

6.1. Multi-layer network architecture

The multi-layered network is more powerful than
the single-layered one. The single-layer network
suffers from the disadvantage that it is only able to
solve linearly separable classification problems.
However, it can overcome this limitation. The multi-
layer perceptron trained by the backpropagation
algorithm has been used widely in the neural network.
Accordingly, it can be used to approximate almost any
function, if we have enough neurons in the hidden
layers. However, we cannot say, in general, how many
layers or how many neurons are necessary for
adequate performance [10].

Fig. 12 shows a five-layer network constructed in
this research. Each individual input of manipulation
forces (f s [ s s S ) 18 weighted by correspond-

Inputs Ist Layer 2nd Layer 3th Layer 4th Layer 5th Layer
4 AY4 AN 4 N7 A4 N N

Hidden Layers

Output Layer

Fig. 12. Neural network.

ing elements of the weights matrix w. Each layer has
its own weight matrix w and an output vector g,

which includes a bias vector and a net input vector.
There are six inputs and the outputs of layers one to
four are the inputs for layers two to five. A layer
whose output is the network output is called an ourtput
layer (layer 5). The other layers are called hidden
layers (layers 1 to 4).

6.2. Performance optimization

When the basic backpropagation algorithm is
applied to a practical problem, the training may take
hours or days of computation time. To accelerate the
convergence, an algorithm includes techniques such
as the learning rate, momentum and rescaling
variables. The learning law is described by the fact
that during training the network parameters (weights
and biases) are adjusted in an effort to optimize the
performance of the network.

Generally, algorithms are distinguished by the
choice of the search direction. In the backpropagation
algorithm, it is composed of the method of steepest
descent for the approximate mean square error. For
steepest descent, a large learning rate will be taking
large steps and is expected to converge faster. If it is
set too large, however, the algorithm will become
unstable. We set the learning rate as a =0.6 with an

iteration number of 1 =10°. In addition, the
momentum coefficient is set to y=0.1 (0<y<1).

The use of momentum is that convergence might be
improved to smooth out the oscillation in the
trajectory. As a result, we are able to accelerate
convergence when the trajectory is moving in a
consistent direction.

6.3. Generalization

In most cases the multi-layer network is trained
with a finite number of examples of proper network
behavior:
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{pl’tl}a{p27t2}f"5{pQ,tQ}’ (Q:1~18) (22)
This training set is normally representative of a much
larger class of possible input/output pairs. It is
important that the network successfully generalize
what it has learned to the total population. The
training set, g(p) is composed of the results of

genetic algorithm obtained at each of the manipulation
forces p=5,10,15,---,90. There are 18 input/target

pairs. Fig. 13 shows the comparison of responses. The
dotted line represents g(p), the solid line represents

the network response, and the ‘+’ symbols indicate the
training set. The network response almost accords
with the response of SGA. This network generalizes
well. By the application of the network response, the
system can be controlled in real time.

7. CONCLUSIONS

This paper has presented two main issues. One is
the determination of optimal configuration for the
pushing task of the humanoid robot by the simple
genetic algorithm. The other is the generalization of
the parameters of SGA by the multi-layer neural
network based on the backpropagation algorithm.

The former focuses on determination of optimal

posture to minimize the energy consumption
according to the change of manipulation force. As a
result, the range of workspace can be enlarged under
the same physical and environmental conditions of the
robot. Since the genetic algorithm has characteristics
that can handle quantitative constraints, it is more
useful in complexity of structure and in
accomplishment of high level tasks like a humanoid
robot. The prerequisites, however, are the accurate and
adequate selection of the objective function and the
system boundary constraints for a robot. They are
identified in sophisticated works with varying
environments and remain of severe interest for
researchers in this related field. The latter is the
perceptron by the practical neural network
architecture, learning algorithm and training technique.
As a result, parameters to pose optimal configuration
according to the change of manipulation force were
generalized almost similar to those of the genetic
algorithm. Even though, we cannot say exactly how
many layers or how many neurons are necessary for
adequate performance in the humanoid robot because
of change of possible input/output pairs according to
the works and/or environments. The proposed neural
network has been generalized well.

With this work the authors reached three important
conclusions: (1) The genetic algorithm is a simple and
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powerful search method that proved to be effective
even with a search-space so vast as that of this
problem. Probably, there are not a great number of
optimization methods capable of performing so well.
(2) Most optimization algorithms including the
genetic algorithm always imply that the more
information the algorithm gets, the less it learns. It
means that the algorithm should have a great
knowledge base obtained via simulation and much
care should be taken before on-line implementations
of a learning algorithm in real and costly systems. (3)
The system boundary constraints seem to be identical
to the other tasks such as twisting a value and lifting a
box, etc. In relation to this point, it is necessary how
the proposed approach could be extended to more
general behaviors. Future topics for study will be to
analyze various motions from the viewpoint of
identification and to investigate applicability in more
detail.
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