DOI QR코드

DOI QR Code

Magnetic Properties of Nano-Sized CuNi Clusters

  • Jo, Y. (Quantum Material Science Team, Korea Basic Science Institute) ;
  • Jung, M.H. (Quantum Material Science Team, Korea Basic Science Institute) ;
  • Kyum, M.C. (Control Development Team, Korea Basic Science Institute) ;
  • Park, K.H. (Mechanical Engineering Department, Korea Maritime University) ;
  • Kim, Y.N. (Mechanical Engineering Department, Korea Maritime University)
  • Published : 2006.12.31

Abstract

We have studied the magnetic properties of the CuNi nanoparticles for three different sizes prepared by plasma and chemical techniques. The magnetization is enormously enhanced with decreasing the nanoparticle size. This enhanced magnetic moment shows almost inversely linear temperature dependence, which could be interpreted by the Langevin-type superparamagnetism. The field dependence exhibits ferromagnetic-like behavior with weak hysteresis, which could described in terms of uncompensated spin and/or surface anisotropy. In addition, the magnetic data suggest that the CuNi nanoparticles produced by the plasma method result in significantly less oxidized metallic nanoparticles than those prepared by other techniques.

Keywords

References

  1. I. M. L. Billas, A. Chatelain, and W. A. de Heer, Science 265, 1682 (1994) https://doi.org/10.1126/science.265.5179.1682
  2. M. Castro, C. Jamorski, and D. R. Salahub, Chem. Phys. Lett. 271, 133 (1997) https://doi.org/10.1016/S0009-2614(97)00420-X
  3. A. N. Andriotis, N. Lathiotakis, and M. Menon, Chem. Phys. Lett. 260, 15 (1996) https://doi.org/10.1016/0009-2614(96)00850-0
  4. X. G. Li, A. Chiba, and S. Takahashi, J. Mag. Mag. Mater. 170, 339 (1997) https://doi.org/10.1016/S0304-8853(97)00039-5
  5. B. K. Rao, Susana Ramos de Debiaggi, and P. Jena, Phys. Rev. B 64, 024418 (2001) https://doi.org/10.1103/PhysRevB.64.024418
  6. Q. Chen and Z. J Zang, Appl. Phys. Lett. 73, 3156 (1998) https://doi.org/10.1063/1.122704
  7. F. Bodker, S. Morup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994) https://doi.org/10.1103/PhysRevLett.72.282
  8. B. D. Cullity, Introduction to Magnetic Materials, Addision-Wesley, Reading, MA, 1972
  9. J. C. Ododo and B. R. Coles, J. Phys. F: Met. Phys. 7, 2393 (1977) https://doi.org/10.1088/0305-4608/7/11/020
  10. P. A. Stampe and G. Williams, J. Phys.: Condens. Matter 9, 9251 (1997) https://doi.org/10.1088/0953-8984/9/43/010
  11. H. P. Kunkel, Z. Wang, G. Williams, J. Phys.: Condens. Matter 1, 3381 (1989) https://doi.org/10.1088/0953-8984/1/21/010
  12. A. P. Murani, A. Tari, and B. R. Coles, J. Phys. F: Met. Phys. 4, 1769 (1974) https://doi.org/10.1088/0305-4608/4/10/023
  13. A. Tari and B. R. Coles, J. Phys. F: Met. Phys. 1, L69 (1971) https://doi.org/10.1088/0305-4608/1/6/107
  14. R. W. Houghton, M. P. Sarachik, and J. S. Kouvel, Phys. Rev. Lett. 25, 238 (1970) https://doi.org/10.1103/PhysRevLett.25.238
  15. J. S. Kouvel and J. B. Comly, Phys. Rev. Lett. 24, 598 (1970) https://doi.org/10.1103/PhysRevLett.24.598
  16. C. G. Robbins, H. D P. A. Beck, Phys. Rev. Lett. 22, 1307 (1969) https://doi.org/10.1103/PhysRevLett.22.1307
  17. T. J. Hicks, B. D. Rainford, J. S. Kouvel, G. G. Low, and J. B. Comly, Phys. Rev. Lett. 22, 531 (1969) https://doi.org/10.1103/PhysRevLett.22.531