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Abstract

This paper investigates a distinct set of complex unitary matrices for QPSK differential space time coding. After
properly selecting the initial transmission matrix and unitary matrices we find that the different combinations of them
could lead different BER performance over slow/fast Rayleigh fading channels and antennas correlated channels. The
numerical results show that the proper selection of the initial transmission matrix and the set of unitary matrices can
efficiently improve the bit error rate performance, especially for the antennas correlated fading channel. The computer
simulations are evaluated over slow and fast Rayleigh fading channels.
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I . Introduction

Space time coding with multiple transmit and receive
antennas minimizes the effect of multipath fading and
improves the performance and capacity of digital trans-
mission over wireless radio channels. Thus far, it has
been assumed that perfect channel estimates, e.g. perfect
channel state information, are available at the receiver
and coherent detection is employed. However, in some
situations, such as high mobility environment or channel
fading conditions changing rapidly, it may be difficult or
costly to estimate the channel accurately. For such
situations, it is useful to develop space time coding
techniques that do not require channel estimates either at
the receiver or at the transmitter. Recently, various sche-
mes have been proposed, such that they use the diffe-
rential coding and noncoherent decoding algorithm with-
out channel estimates!"™™,

Especially, the differential space time coding based on
group codes and unitary matrices has attracted much
attention because of its simple construction™ ™%, In this
work, we investigate a distinct set of complex unitary
matrices for QPSK differential space time coding. After
properly selecting the initial transmission matrix and
unitary matrices we find that the different combinations
of them could lead different BER performance over
slow/fast Rayleigh fading channels and antennas cor-
related channels.

II. Unitary Matrices for Differential Space Time
Coding

In Reference [3], the authors proposed the space time

coding with unitary matrices modulation. Let G be a set

of LxL unitary matrices, where L>n

gllg=ggf=1, for geG (1)

where the entries in g belong to the modulation
constellation set A, (-)H denotes the Hermitian of a
matrix, I; is an LXL identity matrix and the system is
with nr transmit antennas. We assume that there is one
npxL matrix D, such that for any unitary matrix g in the
set, Dg generates one nyxL matrix, whose entries are the
elements of the signal constellation set A. That is
Dge A" for all geG. Assuming that the number of
the codeword is denoted by |G|, the spectral efficiency
of the code is given by

7=log , |IG/L (2)

If the matrix D satisfies

DDU=LI, (3)
then we have

(Dg)(Dg) "=LI, . 4)

In this case, D is called the initial transmission mat-
rix, and g is the unitary matrix for differential space
time coding. In References [3], [5], the authors introduced
a differential space time code for n=L=2 and D=

H “11], with a set of unitary matrices,

_{[1o1[ o 11[; 0170

o={[5 WL ohls LS 4 (5)
which is used for QPSK modulation constellation A=
{£1,+7}, j=V —1. The differential encoding/decoding
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principles for unitary space time modulation schemes
discussed in References [3]~[6] can be applied to the
differential space time codes. At the tth encoding block,
log,/Gl bits are mapped into the set G and a unitary
G =13

To initialize the differential transmission, Xo=D is sent
from nr transmit antennas over L symbol periods. The
encoding rule is given by [5]

matrix g,, where z,={0,1,..

X=X, &, (6)

where we assume that the fading coefficients are cons-
tant across every two transmission blocks. The received
signals for the #— #& transmission block are represented
by an #npxL matrix R,

The differential space time decoding based on the
current and previous received signal matrices is given

by [5]

Z = argnlle%x Re Tr{R g, R"}

H
=arg nllean Re Tri{g, R’ R} e
where ReTr denotes the real part of the trace. The
simple transmission model of the differential space time
encoder and decoder is illustrated in Fig. 1. In this
work, we use only two transmit antennas and one re-
ceiver antenna; the spectral efficiency 7=1.

II. Distinct Complex Unitary Matrices for Space Time
Coding

In this section, we introduce some new complex
unitary matrices, which are distinct from the previous
ones in (5). Different from the conventional designs, the

Information O l
Bits QPSK nitary Transmission|
> Modulation[ gggggi Matrix

Initialization

(a) Encoder

ReTr[gO(.)] >

Eslimated
ReTrlg, ()] | choose | symbol
>

The
Largest

ReTr[géci_, ()] -

(b) Decoder

Fig. 1. The system model of differential space time.
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elements in the new set include both the {+1} and
{#/} with QPSK modulation constellation set A. It
forms the j-rotation space time block code construction
and Jacket matrix""®],

¢o={[g —]H ) ®)
where we have
gl-egp=gp-gh=1, for g,eG, €)]

and the determinant of the different code matrix in Gp
is the same as that of the set G,

ldet (g'—gh=2 for i+j, g', g’eG (10)
|det( g’ — g’ =2 for i#j, g\, gheG (1D

In References [3], [4], (10) and (11) imply that these
two unitary sets (US) have the same upper bound.
However, in our simulations, we find that proper
selection of the initial transmission matrix for the
different US will affect the performance.

3-1 Unitary Matrices Multiplications

By combining with the differential encoding function,
we need to calculate the unitary matrices multiplications.

Property 1. The multiplications of unitary matrix g in
the set G are also a unitary matrix g' in {+G*}

¢

g=gixgixxg!, ge{+G" (g, g/, gDeG (12)

where g g/, ..
{£G"} denotes the set including {+G} and their per-
muted cases.

.g' are the unitary matrices in G, and

Property 2: The multiplications of unitary matrices
gp in the set G, are also a unitary matrix g .

(1) If the number of g, in multiplications is even,
g p is a matrix in set {+G}.
(i) If the number of g, in multiplications is odd,

g p Is a matrix in set {+G7%}.

[ 7 t
gp ——gDXgDX...XgD
-—

t times

gD}, n= odd g g)eG,

(13)

where g%, g/, .., g', are unitary matrices in G,
Equations (12) and (13) imply that the multiplications
of the unitary matrices will lead to different pro-
perties of differential space time coding. The details
of these results will be presented in the rest of this

work.
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3-2 Transmission Model 1

Let us define G as US 1, and Gp as US 2, respec-
tively. When' the initial transmission matrix D=H N 11],
it is defined as transmission model 1. These two sets
used transmission model 1 have different performances
with the same noncoherent decoding algorithm over
slow Rayleigh fading channel, as shown in Fig. 2. As
illustrated in Fig. 2, these two sets have a similar
performance over lower signal to noise ratio(SNR) by
using E/N,, where E, is the spectral energy density of
the bit and N, is the power spectral density of the noise,
respectively. However, US 1 (G) leads to a sharp
degradation compared with US 2 (Gp) over higher SNR.
The main reason of this phenomenon is that the trans-
mitted symbols are different.

Case A: By considering US 1 (G), each unitary
matrix g€ G has only two symbols, {1} or {<;. If the

initial transmission matrix is set as D=H _11], the

combined group Dg has

RN

[ el =L

H —11][6 —0;']=[§ —jj]=fH —11]

LM g1 A4 )

The results show that the coded matrices only consist

of the Hadamard matrices and their rotated cases, and
every matrix uses the anti-polar symbols {1} or {+}.

102t
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Fig. 2. Performance of transmission model 1 by using
different US over slow Rayleigh fading channel.
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Obviously, those symbols have largest Euclidean dis-
tance in the QSPK constellation. Further multiplications
by using X,=X,_,g,, g,€G; will have the same result

as the above function, since the multiplication of the
unitary matrix g is also a unitary matrix in unitary group
1 {+G} and its permuted cases, as shown in Property 1.

Case B: By considering US 2 ( G,), and the initial

transmission matrix D=H _11], we have
R
a0
R
[1 —1] [—] 01—/ —1]
The results denote that the coded matrices are com-
plex unitary matrices, and every matrix has three diffe-

rent symbols at least. However, further multiplications
by using X,=X,_, g,, g,=Gp, have different results,
such as

2 o=
G
IR ]]—f[ )
VL

These coded matrices are the same as the transmitted
symbols in Case A, which have the largest Euclidean
distance used the anti-polar symbols ({z1} or {£;}. Gene-
rally, the further differential space time coding has

X! :Xt—lgz,

_7[—1 -1

=Dxg xg,x..xg,
e ———
t times (14)

where t={1,2,3,..} and . (g, &, ..,8)= G, According

to Property 2, we obtain that

& mutti € {iG; } ’
gmulri € {iG*}7

n=odd

gmullizglngX'“th’ {
=
—_— n =even (15)

£ times

Therefore, the transmitted coded matrices in Case B
have two different patterns. One is the complex unitary
matrix, which has three different symbols at least; the
other is the Hadamard matrices or their rotated cases as
shown in Case A That is, the transmitted coded ma-
trices.
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X ,=Dg .. have only anti-polar symbols {+1} or-
{+7} when t=even, X ,=Dg ., has three different trans-
mitted symbols at- least, when f=odd: Normally, for a
random message sequence, half of them can generate the
coded matrices as Hadamard matrices or their rotated
cases, if Case B is used.

In transmission model 1, the transmitted symbols
generated from G and G, are different. And it is clear
that the symbols from US 1 ( G) have the largest Eu-
clidean distances for QPSK transmission, since each
time only the anti-polar symbols are transmitted. The
detection error can be protected.

3-3 Transmission Model 2
The initial transmission matrix is now set as D’ =
H _11], a complex unitary matrix. The simulation results

generated from G and Gp will be contrary to the
previous one (transmission model 1) over slow Rayleigh
fading channel, as shown in Fig. 3. The main reason
will be described in Cases C and D.

Case C: As shown in Fig. 3, the set G case has slow

BER degradation, since the anti-polar symbols do not
exist. The coded matrices D’g are now changed as

1 —;] [é (1)] [1 —
2=l
A Al Y
1 —J] [ d]=[_11 j]

10°

BER

3] QPSK 100 frames
10°F 1 frame = 1024 bits

slow Rayleigh fading channel
two transmit antennas

one received antenna

-o- Us2

—%— US1

10 I 2 L s £ 1
6 8 10 12 14 16 18 20

Eb/No(dB)

Fig. 3. Performance of transmission model 2 by using
different US over slow Rayleigh fading channel.
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The results show that the coded matrices are now
complex unitary matrices, which are similar to Case B
when n=odd: The further multiplications by using
X=X, 8, 2.€G, will have the same result, since
the multiplication of the unitary matrix g is also a
unitary matrix in US 1 {+G "}, as shown in Property 1.

Case D: Now, by considering the US Gp in trans-
mission model 2, we first have

A B PR i F)

1 —;] [0 o]=[_11 i]

A b i I B B
RS I R G B B )

The results show that the coded matrices are Hada-
mard matrices and their rotated cases, where only
anti-polar symbols {1} or {z;} exist for every matrix.
Secondly, similar to Case B, the further multiplications
of the unitary Eatrices have another output, such as

A =0
LG =]
i—ll]x[(l) 0] [—1?]
I P A Y

The results denote that the coded matrices are
complex unitary matrices, and every matrix has three di-
fferent symbols at least. Similarly, the further differen-
tial space time coding has

X, =X,_g,=Dxgxg,x.xg,, tef{l,23,.}
| —

t fimes ( 1 6)

where (g,,g,,..,8)€G,.. According to (15), X,=
D’g ,.; has only anti-polar symbols {+1} or {ij},
when =odd; X,=D ‘g, has three different symbols
at least, when f=even. Normally, for a random message
sequence, half of them can generate the coded matrices
as Hadamard matrices or their rotated cases, which is

the same as Case B.

3-4 Numerical Results

The multiplications of the unitary matrices from G
and Gp, are listed in Table 1. It demonstrates that the
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Table 1. The multiplications of different unitary matrices.

: DIFFERENTIAL SPACE TIME CODING BASED ON DIFFERENT UNITARY MATRICES SETS

z{[(l)? [—1 0] [(j) —0]] [; 0]}

6o={ls 2050l [ 3L )

L3 g-[3¢ 5 SHG5 [
g [—10 [—10] _01 ~01 [;0[ [ ] 95]*[9(1) ;0] [—010]
D ERD TR 0 A2 2400 -0 3
a1 Y N e -l
B -0 [l [ O] A0 =4
Ny —1o]xjo]=[é—0/] [9(1)][ ] [0—1 9(1)(1)6 ?6]=[—016]
Rl [ MW R P N IR MR 300
oA 0100 ([P [ e -1

functions are obtained from Property 1 and 2.

Some other numerical results from the simulations of
transmission models 1 and 2 over slow Rayleigh fading
channel are shown in Table 2. As illustrated in Table 2,
the BER performance of Case A has 0.5 dB improve-
ment from that of Cases B and D, but it gained about
1.1 dB from that of Case C. Same as the analysis of the
multiplications of unitary matrices, the BER perfor-
mance of Case B is the same as that of Case D. The
simulations demonstrate that the multiplications of the
unitary matrices and the anti-polar transmitted symbols
with largest Euclidean distances are the main reason for
the differences of the different cases.

The similar results can also be achieved over fast
Rayleigh fading channel, as shown in Figs. 4 and 5. In
this situation, f, is Doppler frequency and T is the

duration of the coded symbols.

When transmission model 1 over fast Rayleigh fading
channel is used, US 1 leads to a sharp degradation
compared with US 2 over higher SNR, but US 2 has a
slightly better performance over lower SNR case, as
illustrated in Fig. 4.

10°

BER

QPSK 100 frames
1 frame =1024 bits

10"} Fast Rayleigh fading channel
two transmit antennas

one receive antenna

-9~ US1
— US 2

10 i f 1 L f s 2 1 f
8 10 12 14 16 18 20 22 24 26 28

Eb/No(dB)

Fig. 4. The performance of transmission model 1 over
fast Rayleigh fading channel with f;7=0.05.

If transmission model 2 over fast Rayleigh fading
channel is used, we find that the performance of US 1
and US 2 will be better than that of transmission model
1, under lower SNR cases, as shown in Fig. 5. For

Table 2. Performances of the different cases over slow Rayleigh fading channel(two transmit antennas and one receiver

antenna).
Ey/Ny (dB) Case A Case B Case C Case D
18 BER=0.0000292 BER=0.0001269 BER=0.0004785 BER=0.0001719
16 BER=0.0008203 BER=0.0016 BER=0.0033 BER=0.0021
14 BER=0.0079 BER=0.0096 BER=0.0132 BER=0.0102
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Fig. 5. The performance of transmission model 2 over
fast Rayleigh fading channel with f;7=0.05.

example, if Ex/No=10 dB; the BER of US 1 and the
transmission model 2 is about 0.085, but the same case
of transmission model 1 is about 0.112. Moreover, the
cases from set G have slow BER degradation in the
simulations, according to the multiplications of unitary
matrices in Cases C and D.

Similar results are also obtained in the antennas cor-
related channels. Assuming that the antenna correlation
matrix is given by

0.=[1 9

“le1 (17)

where 0 is the correlation factor(CF) between the trans-
mit antennas. In the simulation, the correlation factor is
chosen to be 0.25, 0.5, and 0.75. It can be observed

QPSK100 frames
1 frame=1024 bits
107} two transmit antennas
one receive antenna

g~ US 2 CF=0.25

| |-e~ us2cr=05
10 bl US2CF=0.75
-5~ US 1 CF=0.25
- US 1 CF=05
—+ US 1CF=0.75
10 b Y — T

10 12 14 16 18 20 22 24 26 28
Eb/No(dB)

BER

Fig. 6. Correlated antennas for different US used trans-
mission model 1.
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QPSK 100 frames
1 frame =1024 bits
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one received antenna
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Fig. 7. Correlated antennas for different US used trans-
mission model 2.
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Fig. 8. CF v.s.. Es/Np (BER target=10""2).

BER

that the code performance is sharply degraded when the
correlation factor decreases, as shown in Figs. 6 and 7.
And as illustrated in Fig. 8, we find that US 2 will lead
to the same performance on different transmission
models.

IV. Conclusion

This paper investigates a distinct set of complex uni-
tary matrices for QPSK differential space time coding.
The numerical results show that the proper selection of
the initial transmission matrix and the US can efficiently
improve the BER performance. And transmission model
2 could lead to better performance over lower SNR if
the system is operated in the fast Rayleigh fading
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channel. As a result, we could generalize several criteria
for differential space time coding as follows:

(1) If D is the real unitary matrix, the US 1 (G) is
the best choice for the differential encoding.

(2) If D is not the real unitary matrix or unknown, the
US 2 (Gb) is the best choice for the differential
encoding.

(3) If the system is in lower SNR, transmission model
2 is a good choice.

This work was supported by Ministry of Infor-
mation and Communication(MIC) supervised by IIFA
and ITRC supervised by IITA, ITSOC and Interna-
tional Cooperative Research Program of the Minister
of Science and Technology, KOTEF, 2nd stage
BK21, and KRF 001-041-E00207, korea.

References

[11 V. Tarokh, H. Jafarkhani, "A different detection
scheme for transmit diversity", IEEE Journal on
Selected Areas in Communications, vol. 18, no. 7,
pp. 1169-1174, 2000.

Kwang-Jae Lee

He received the B.S. and M.S. degrees in
electronic engineering from Chonbuk Na-
tional University in 1986, 1990 respec-
tively. He is currently a full time lecturer
in Hanlyo University. His research inte-
rests include the areas of mobile commu-
nications, RFID, powerline communications,
and channel coding.

Chang-Joo Kim

He received the B.S. degree in electronic
engineering from Hankuk Aviation Uni-
versity, Korea, in 1980 and M.S. and Ph.
D. degree in electronic engineering from
Korea Advanced Institute of Science and
Technology, Korea, in 1988 and 1993,

. | respectively. Since 1994 he has been wor-

VG king for Electronics and Telecommunica-
tions Research Institute(ETRI). His main interests are RF sig-
nal processing and CDMA signal analysis.

[2] H. Jafarkhani, V. Tarokh, "Multiple transmit antenna
differential detection from generalized orthogonal
designs", IEEE Transactions on Information Theory,
vol. 47, no. 2, pp. 199-207, 1999.

[3] B. L. Hughes, "Differential space time modulation",
IEEE Transactions on Information Theory, vol. 46,
no. 7, pp. 2567-2578, 2000.

[4] B. M. Hochwald, T. L.Marzetta, "Unitary space time
modulation for multiple communications in Rayleigh
flat fading", IEEE Transactions on Information The-
ory, vol. 46, no. 2, pp. 543-564, 2000.

[5]1 B. Vucetic, J. Yuan, Space Time Coding, Wiley:
New York, 2003.

[6] B. M. Hochwald, W. Sweldens, "Differential unitary
space time modulation", IEEE Transactions on Co-
mmunications, vol. 48, no. 12, pp. 2041-2052, 2000.

[7]1 J. Hou, M. H. Lee, "j-rotation space time block
codes", Proceedings of IEEE International Sympo-
sium on Information Theory, ISIT 2003, Yokohama,
p. 125, 2003.

[8] M. H. Lee, "A new reverse jacket transform and its
fast algorithm", IEEE Transactions on Circuits and
systems [I, vol. 47, no. 1, pp. 39-47, 2000.

Hyun-Seok Yoo

He received the B.S. in electronic & in-
formation engineering from Chonbuk Na-
tional University in 2006. He is currently
in Master course at Chonbuk National
University. His research interests include
the areas of mobile communications and
channel coding.

Sung-Hun Kim

He received the B.S. degrees in electronic
& information engineering from Chonbuk
National University in 2006. He is curren-
" tly in Master course at Chonbuk Nationa.
University. His research interests include
the areas of mobile communications and
channel coding.

215



JOURNAL OF THE KOREA ELECTROMAGNETIC ENGINEERING SOCIETY, VOL. 6, NO. 4, DEC. 2006

Moon-Ho Lee

He received the B.S. and M.S. degree
both in electrical engineering from the
Chonbuk National University, Korea, in
1967 and 1976, respectively, and the Ph.
D. degree in electronics engineering from
the Chonnam National University in 1984
i and the University of Tokyo, Japan, in

§ 1990. From 1970 to 1980, he was a chief
engineer with Namyang Moonhwa Broadcasting. Since 1980,
he has been a professor with the department of information
and communication and a director with the Institute of Infor-
mation and Communication, both at Chonbuk National Uni-
versity. From 1985 to 1986, he was also with the University
of Minnesota, as a Postdoctoral Feller. He has held visiting
positions with the University of Hannover, Germany, during
1990, the University of Aachen, Germany, during 1992 and
1996, and the University of Munich, Germany, during 1998.
His research interests include the multidimensional source and
channel coding, mobile communication, and image processing.

216



