Structural and Physical Properties of Antheraea pernyi Silk Fibroin Fiber Treated with $I_2-KI$ Aqueous Solution

  • Khan Md. Majibur Rahman (Faculty of Textile Science and Technology, Shinshu University) ;
  • Gotoh Yasuo (Faculty of Textile Science and Technology, Shinshu University) ;
  • Morikawa Hideaki (Faculty of Textile Science and Technology, Shinshu University) ;
  • Miura Mikihiko (Faculty of Textile Science and Technology, Shinshu University)
  • Published : 2006.12.30

Abstract

Silk fibroin (SF) fiber from the Antheraea pernyi silkworm was treated with a 1.23 N iodine-potassium iodide ($I_2-KI$) aqueous solution, and the structure and physical properties were investigated to clarify the effects of the iodine treatment. The noticeably high weight gain value of SF fiber, about 25 wt% was attributed to the absorption of polyiodide ions in the form of $I_3{^-}\;and\;I_5{^-}$. Fourier transform infrared spectroscopy and X-ray diffraction measurements suggested that polyiodide ions mainly entered the amorphous region. In addition, a new sharp reflection on the meridional direction, corresponding to a period of $7.0{\AA}$, was observed and indicated the possibility of the formation of mesophase structure of ${\beta}$-conformation chains. Dynamic viscoelastic measurements showed that the damping tan ${\delta}$ peak at $270^{\circ}C$ gradually shifted to lower temperature in the iodinated SF fibers, suggesting an enhancement of the molecular motion of the fibroin chains induced by the presence of polyiodide ions. With heating above $254^{\circ}C$, the iodine component introduced intermolecular cross-linking of SF, and the melt flow of the sample was inhibited. The thermal decomposition stability of fibroin molecules was greatly enhanced by iodine treatment.

Keywords

References

  1. R. E. Marsh, R. B. Corey, and L. Pauling, Acta Cryst., 8, 710 (1955) https://doi.org/10.1107/S0365110X5500217X
  2. G. Freddi and M. Tsukada, Current Trends in Polym. Sci., 5, 53 (2000)
  3. M. Tsukada, G. Freddi, Y. Gotoh, and N. Kasai, J. Polym. Sci. Part-B: Polym. Phys., 32, 1407 (1994) https://doi.org/10.1002/polb.1994.090320812
  4. Y. Kawahara, T. Hananouchi, and T. Kimura, Text. Res. J., 73, 289 (2003) https://doi.org/10.1177/004051750307300402
  5. F. Lucas, J. T. B. Shaw, and S. G. Smith, J. Mol. Biol., 2, 339 (1960) https://doi.org/10.1016/S0022-2836(60)80045-9
  6. J. Kirimura, M. Saito, and M. Kobayashi, Nature, 195, 729 (1962)
  7. J. T. B. Shaw and S. G. Smith, Biochem. Biophys. Acta, 52, 305 (1961) https://doi.org/10.1016/0006-3002(61)90680-1
  8. M. D. Pierschbacher and E. Ruoslahti, Nature. 309, 30 (1984) https://doi.org/10.1038/309030a0
  9. M. D. Pierschbacher and E. Ruoslahti, Proc. Natl. Acad. Sci. USA, 81, 5985 (1984)
  10. N. Minoura, S. Aiba, M. Higuchi, Y. Gotoh, M. Tsukada, and Y. lmai, Biochem. Biophy. Res. Commun., 208, 511 (1995) https://doi.org/10.1006/bbrc.1995.1368
  11. G N. Gapurova, Zdravookhranenie Turkmenistana, 27, 15 (1983)
  12. Y. Kawahara, J. Seric. Sci. Jpn., 62, 272 (1993)
  13. T. Tsuruta, T. Hayashi, K. Kataoka, K.Ishihara, and Y. Kimura in 'Biomedical Applications of Polymeric Materials', p.128, CRC Press, Boca Raton, FLXS, 1993
  14. H. Y. Kweon and Y. H. Park, J. Appl. Polym. Sci., 73, 2887 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990929)73:14<2887::AID-APP12>3.0.CO;2-I
  15. M. Li, W Tao, S. Lu, and S. Kuga, Int. J. Biol. Macromol., 32, 159 (2003) https://doi.org/10.1016/S0141-8130(03)00049-7
  16. M. Tsukada, Y. Gotoh, G. Freddi, M. Matsumura, H. Shiozaki, and H. Ishikawa, J. Appl. Polym. Sci., 44, 2203 (1992) https://doi.org/10.1002/app.1992.070441217
  17. G. Freddi, H. Kato, M. Tsukada, G. Allara, and H. Shiozaki, J. Appl. Polym. Sci., 55, 481 (1995) https://doi.org/10.1002/app.1995.070550313
  18. M. Tsukada, T. Arai, and S. Winkler, J. Appl. Polym. Sci., 78, 382 (2000) https://doi.org/10.1002/1097-4628(20001010)78:2<382::AID-APP180>3.0.CO;2-6
  19. Y. Kawahara and M. Shioya, J. Appl. Polym. Sci., 73, 363 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990718)73:3<363::AID-APP7>3.0.CO;2-R
  20. M. Tsukada, G. Freddi, M. R. Massafra, and S. Beretta, J. Appl. Polym. Sci., 67, 1393 (1998) https://doi.org/10.1002/(SICI)1097-4628(19980222)67:8<1393::AID-APP5>3.0.CO;2-9
  21. H. Y. K weon, I. C. Urn, and Y. H. Park, Polymer, 42, 6651 (2001) https://doi.org/10.1016/S0032-3861(01)00104-5
  22. Q. Peng, Q. Xu, H. Xu, M. Pang, J. Li, and D. Sun, J. Appl. Polym. Sci., 98, 864 (2005) https://doi.org/10.1002/app.22186
  23. M. Tsukada, G. Freddi, and N. Kasai, J. Polym. Sci. Part-B: Polym. Phys., 32, 1175 (1994) https://doi.org/10.1002/polb.1994.090320705
  24. H. Akiyama, T. Oono, M. Saito, and K. Iwatsuki, J. Dermatol., 31, 529 (2004)
  25. A. Kawaguchi, Polymer, 33, 3981 (1992) https://doi.org/10.1016/0032-3861(92)90395-D
  26. A. Cesaro and D. A. Brant, Biopolymers, 16, 983 (1997) https://doi.org/10.1002/bip.1977.360160504
  27. J. H. Yeum, J. W Kwak, S. S. Han, S. S. Kim, B. C. Ji, S. K. Noh, and W S. Lyoo, J. Appl. Polym. Sci., 94, 1435 (2004) https://doi.org/10.1002/app.21048
  28. H. Yajima, M. Morita, M. Hashimoto, H. Sashiwa, T. Kikuchi, and T. Ishii, Int. J. Thermophys., 22, 1265 (2001) https://doi.org/10.1023/A:1010628712529
  29. M. M. R. Khan, Y. Gotoh, M. Miura, H. Morikawa, and M. Nagura, J. Polym. Sci. Part-B: Polym. Phys., 44, 3418 (2006) https://doi.org/10.1002/polb.20992
  30. H. Lecus, Angew. Chem., 47, 779 (1934) https://doi.org/10.1002/ange.19340474703
  31. H. Kato in 'Silk Processing Techniques and its Application', pp.18-19, Elsevier, Amsterdam, 1968
  32. M. Li, W Tao, S. Kuga, and Y. Nishiyama, Polym. Adv. Technol., 14, 694 (2003) https://doi.org/10.1002/pat.409
  33. M. Nagura in 'Structure of Silk Yarn Part -A: Biological and Physical Aspects', Topics on 'Molecular Motion in Silk Fibre', p.249, Science Publishers Inc., UK, 2000
  34. G. Freddi, M. Tsukada, and S. Beretta, J. Appl. Polym. Sci., 71, 1563 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990307)71:10<1563::AID-APP4>3.0.CO;2-E