Cloning of Pig Kidney cDNA Encoding an Angiotensin I Converting Enzyme

돼지 신장의 Angiotensin I Converting Enzyme cDNA 클로닝

  • Yoon, Jang-Ho (Department of Food Science and Technology, Dongguk University) ;
  • Yoon, Joo-Ok (Department of Food Science and Technology, Dongguk University) ;
  • Hong, Kwang-Won (Department of Food Science and Technology, Dongguk University)
  • Published : 2006.12.31

Abstract

Angiotensin converting enzyme(ACE) is a zinc-containing dipeptidase widely distributed in mammalian tissues and is thought to play a significant role in blood pressure regulation by hydrolyzing angiotensin I to the potent vasoconstrictor, angiotensin II. Recently, the presence of ACE in pig ovary was reported and the ACE from pig kidney was isolated and characterized. However no nucleotide sequence of the ACE gene from pig is yet known. We report here the cloning of the ACE cDNA from pig kidney by using the reverse transcriptase-polymerase chain reaction. The complete amino acid sequence deduced from the cDNA contains 1309 residues with a molecular mass of 150 kDa, beginning with a signal peptide of 33 amino acids. Amino acid sequence analysis showed that pig kidney ACE is also probably anchored by a short transmembrane domain located near the C-terminus. This protein contains a tandem duplication of the two homologous amino acid peptidase domain. Each of these two domains bears a putative metal-binding site (His-Glu-Met-Gly-His) identified in mammalian somatic ACE. The alignment of pig ACE amino acid sequence with human, rabbit, and mouse reveals that both two domains have been highly conserved during evolution.

포유류의 조직에 널리 분포되어 있으며 혈압 조절에 중요한 역할을 하는 Angiotensin-converting enzyme(ACE)은 아연을 함유하는 dipeptidase로서 angiotensin I을 가수분해하여 강력한 혈압상승제인 angiotensin II를 생성하는 효소이다. 최근에 돼지의 난소에서 ACE 활성이 측정되었으며, 돼지의 신장에서 ACE 단백질이 분리되어 그 특성이 알려졌다. 그러나 돼지의 어떠한 ACE DNA 염기서열도 아직까지 보고 된 바는 없다. 그러므로 본 연구에서 reverse transcriptase-polymerase chain reaction(RT-PCR)을 이용하여 돼지의 신장 ACE cDNA를 클로닝하고 그 염기서열을 분석하였다. ACE cDNA는 1309개의 아미노산으로 구성되어 있으며 그 분자량은 150kDa이다. 염기서열로부터 유추한 아미노산의 서열을 분석한 결과, N 말단의 33개 아미노산이 signal peptide 역할을 하는 것으로 보이며, C 말단 근처의 짧은 transmembrane 영역은 세포막에 anchor역할을 하는 것으로 보인다. 돼지 신장의 ACE에서 두 개의 매우 유사한 amino acid peptidase domain은 tandem duplication 되어 있으며, 각각의 domain은 다른 포유류의 체세포 ACE들과 마찬가지로 putative metal-binding site(His-Glu-Met-Gly-His)를 하나씩 가지고 있는 것으로 나타났다. 돼지 신장 ACE 서열과 인간, 토끼, 쥐 등과 같은 포유류의 ACE 아미노산 서열들과의 상동성 비교는 진화과정 중 두 domain이 매우 잘 보전되어 왔음을 보여주고 있다.

Keywords

References

  1. Baudin, B. (2002) New aspects on angiotensin-converting enzyme: from gene to disease. Clin. Chem. Lab. Med. 40, 256- 265 https://doi.org/10.1515/CCLM.2002.042
  2. Cushman, D. W. and Cheung, H. S. (1971) Concentration of angiotensin I converting enzyme on tissues of rat. Biochem. Biophys. Acta 250, 261-265 https://doi.org/10.1016/0005-2744(71)90142-2
  3. Skegges, L. T., Dorer, F. E., Kahn, J. R., Lentz, K. E. and Levine, M. (1976) The Biochemistry of the Renin-Angiotensin System and Its Role in Hypertension. Am. J. Med. 60, 737-748 https://doi.org/10.1016/0002-9343(76)90888-3
  4. Vallotton, M. B. (1987) The renin-angiotensin system. Trends Pharmac. Sci. 8, 69-74 https://doi.org/10.1016/0165-6147(87)90013-7
  5. Erdos, E. G., (1990) Angiotensin I converting enzyme and the changes in our concepts through the year: Lewis K. Dahl memorial lecture. Hypertension. 16, 363-370 https://doi.org/10.1161/01.HYP.16.4.363
  6. Soffer, R. L. (1981) In Biochemical Regulation of Blood Pressure. John Wiley and Sons, New York
  7. Conell, M. J., Williams, T. A., Lamango, N. S., Dacid, C., Corvool, P., Soubrier, F., Hoheisel, J., Lehrachm H., and Isaac, R. E. (1995) Cloning and Expression of an Evolutionary Conserved Single-domain Angiotensin Converting Enzyme from Drosophila melanogaster. J. Biol. Chem. 270, 13613- 13619 https://doi.org/10.1074/jbc.270.23.13613
  8. Kumar, R. S., Thekkumkara, T. J. and Sen, C. G. (1991) The mRNA encoding the two angiotensin converting isozymes are transcribed from the same gene by a tissue-specific choice of alternative transcription initation sites. J. Biol. Chem. 266, 3854-3862
  9. Ehlers, M. R. and Riordan, J. F. (1989) Angiotensin converting enzyme: new concepts concerning its biological role. Proc. Biochemistry. 28, 5311-5318
  10. Lattion, A. L., Soubrier, F., Allegrini, J., Hubert, C., Corvol, P. and Alhenc-Gelas, F. (1989) The testicular transcript of the angiotensin converting enzyme encodes for the ancestral, nonduplicated form of the enzyme. FEBS Lett. 252, 99-104 https://doi.org/10.1016/0014-5793(89)80897-X
  11. Lanzillo, J. J., Stevens, J., Dasarsthy, Y., Yotsumoto, H. and Fanburg, B. L., (1985) Angiotensin converting enzyme from human tissues. Physicochemical, catalytic, and immunological properties. J. Biol. Chem. 260, 14938-14944
  12. Costerousse, O., Allegrini, J., Lopez, M., and Alheng-Gelas, F. (1993) Angiotensin I converting enzyme in human circulating mononuclear cells. Genetic polymorphism of expression in Tlymphocytes. Biochem. J. 290, 33-40 https://doi.org/10.1042/bj2900033
  13. Kenny, A. J. and Hooper, N. M. (1991) In Degradation of Bioactive Substances: Peptidases involved in the metabolism of inactive peptides. CRC Press. Florida
  14. Ehlers, M. R. W., Chen, Y. N-P., and Riordan, J. F. (1989) Molecular cloning of human testicular angiotensin converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial ACE. Proc. Natl. Acad. Sci. USA 86, 7741-7745
  15. Kumar, R. S., Kusari, J., Roy, S. N., Soffer, R. L. and Sen, G. C. (1989) Structure of testicular angiotensin converting enzyme. A segmental mosaic isozyme. J. biol. Chem. 264, 16754- 16758
  16. Soubrier, F., Wei, L., Hubert, C., Clauser, E., Alhenc-Gelas, F., and Corvol, P. (1993) Molecular biology of the angiotensin converting enzyme: Structure-function. Gene polymorphism and clinical implications. J. Hypertens. 11, 599-604 https://doi.org/10.1097/00004872-199306000-00003
  17. Koike, G., Krieger, J. E., Jacob, H. J., Mukoyama, M., Pratt, R. E. and Dzau, V. J. (1994) Angiotensin converting enzyme and genetic hypertension: cloning of rat cDNAs and characterization of the enzyme. Biochem. Biophys. Res. Commun. 198, 380-386 https://doi.org/10.1006/bbrc.1994.1053
  18. Matsui H. and Takahashi T. (2002) Presence of angiotensinconverting enzyme in follicular fluids of porcine ovaries and its possible involvement in the intrafollicular breakdown of bradykinin. Mol Reprod Dev. 62, 99-105 https://doi.org/10.1002/mrd.10074
  19. Chomczynski, P. and Sacchi, N. (1987) Single-step method of RNA isolation by acid guanidium thiocyanate-phenolchloroform extraction. Anal. Biochem. 18, 5294-5299
  20. Erdos, E. G. and Skidgel, R. A. (1987) The angiotensin I converting enzyme. Lab. Invest. 56, 345-348
  21. Thompson, J. D., Higgins, D. G. and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionsspecific gap penalties and weight matrix choice. Nucleic Acids Research. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  22. Patchett, A. A. and Cordes, E. H. (1985) The design and properties of N-carboxyalkyldipeptide inhibitors of angiotensin converting enzyme. Adv. Enzym. 57, 1-84