Evaluation of a Fungal Spore Transportation in a Building under Uncertainty

  • Moon, Hyeun Jun (Architectural Engineering, School of Architecture, Dankook University)
  • 투고 : 2005.11.16
  • 발행 : 2006.06.30

초록

A fungal spore transportation model that accounts for the concentration of airborne indoor spores and the amount of spores deposited on interior surfaces has been developed by extending the current aerosol model. This model is intended to be used for a building with a mechanical ventilation system, and considers HVAC filter efficiency and ventilation rate. The model also includes a surface-cleaning efficiency and frequency that removes a portion of spores deposited on surfaces. The developed model predicts indoor fungal spore concentration and provides an indoor/outdoor ratio that may increase or decrease mold growth risks in real, in-use building cases. To get a more useful outcome from the model simulation, an uncertainty analysis has been conducted in a real building case. By including uncertainties associated with the parameters in the spore transportation model, the simulation results provide probable ranges of indoor concentration and indoor/outdoor ratio. This paper describes the uncertainty quantification of each parameter that is specific to fungal spores, and uncertainty propagation using an appropriate statistical technique. The outcome of the uncertainty analysis showed an agreement with the results from the field measurement with air sampling in a real building.

키워드

참고문헌

  1. ASHRAE (1999) Method of Testing General Ventilation Air-Cleaning Devices for Removal Efficiency by Particle Size, Atlanta GA, American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE Standard 52.2)
  2. ASHRAE (2000) ASHRAE Handbook: HVAC Systems and Equipment, Atlanta GA, American Society of Heating, Refrigeration and Air-Conditioning Engineers
  3. Burge, H. A. (2002) 'An Update on Pollen and Fungal Spore Aerobiology', Journal of Allergy and Clinical Immunology, 110 (4), 544-552 https://doi.org/10.1067/mai.2002.128674
  4. Burge, H. A., Pierson, D. L., Groves, T. O., et al. (2000) 'Dynamics of Airborne Fungal Populations in a Large Office Building', Current Microbiology, 40 (1), pp.10-16 https://doi.org/10.1007/s002849910003
  5. Cristy, G. A., Chester, C. V. (1981) Emergency Protection from Aerosol, Oak Ridge, TN, Oak Ridge National Laboratory
  6. De Wit, S., Augenbroe, G. (2002) 'Analysis of Uncertainty in Building Design Evaluations and Its Implications', Energy and Buildings, 34, 951-958 https://doi.org/10.1016/S0378-7788(02)00070-1
  7. European Commission - IPSC (2004) Simlab 2.2 Reference Manual
  8. Fogh, C. L., Andersson, K. G. (2000) 'Modelling of Skin Exposure from Distributed Sources', The Annals of Occupational Hygiene, 44 (7), 529-532 https://doi.org/10.1016/S0003-4878(00)00035-1
  9. Fogh, C. L., Byrne, M. A., Roed, J., et al. (1997) 'Size Specific Indoor Aerosol Deposition Measurements and Derived I/O Concentrations Ratio', Atmospheric Environment, 31(15), 2193-2203 https://doi.org/10.1016/S1352-2310(97)00037-X
  10. Gorny, R. L., Reponen, T., Grinshpun, S. A., et al. (2001) 'Source Strength of Fungal Spore Aerosolization from Moldy Building Material', Atmospheric Environment, 35 (28), 4853-4862 https://doi.org/10.1016/S1352-2310(01)00261-8
  11. Holm, A. H., Kuenzel, H. M. (2002) 'Practical Application of an Uncertainty Approach for Hygrothermal Building Simulations-Drying of an AAC Flat Roof', Building and Environment 37, 883-889 https://doi.org/10.1016/S0360-1323(02)00047-1
  12. Kulmala, M., Asmi, A. and Pirjola, L. (1999) 'Indoor Air Aerosol Model: The Effect of Outdoor Air, Filtration and Ventilation on Indoor Concentrations', Atmospheric Environment, 33 (14), 2133-2144 https://doi.org/10.1016/S1352-2310(99)00070-9
  13. Kulmala, M., Raunemaa, T. and Tapper, U. (1987) 'Deposition of Indoor Aerosols as Determined by PIXE Analysis', Nuclear Instruments and Methods in Physics Research 22, 337-339 https://doi.org/10.1016/0168-583X(87)90353-3
  14. Lehtonen, M.,Reponen, T. (1993) 'Everyday Activities and Variation of Fungal Spore Concentration in Indoor Air', International Biodeterioration and Biodegradation, 31, 25-39 https://doi.org/10.1016/0964-8305(93)90012-Q
  15. Moon, H. J. (2005) Assessing Mold Risks in Buildings under Uncertainty, Ph.D. thesis, Atlanta, College of Architecture, Georgia Institute of Technolog
  16. Moon, H. J., Augenbroe, G. (2005) 'A Mixed Simulation Approach to Analyze Mold Growth under Uncertainty', In: Proceedings of the Ninth IBPSA Conference. Montreal, Canada
  17. Nazaroff, W. W., Cass., G. R. (1989) 'Mathematical Modelling of Indoor Aerosol Dynamics', Environmental Science and Technology, 23 (2), 157- 166 https://doi.org/10.1021/es00179a003
  18. Nazaroff, W. W., Cass., G. R. (1991) 'Protecting Museum Collections from Soiling Due to the Deposition of Airborne Particles', Atmospheric Environment, 25A (5/6), 841-852
  19. Pasanen, A. L., Pasanen, P., Jantunen, M. J., et al. (1991) 'Significance of Air Humidity and Air Velocity for Fungal Spore Release into the Air', Atmospheric Environment, 25A (2), 459-462
  20. Raunemaa, T., Kulmala, M., Saari, H., et al. (1989) 'Indoor Air Aerosol Model: Transport Indoors and Deposition of Fine and Coarse Particles', Aerosol Science and Technology, 11 11-25 https://doi.org/10.1080/02786828908959296
  21. Salonvaara, M., Karagiozis, A.,Holm, A. H. (2001) 'Stochastic Building Envelope Modeling - the Influence of Material Properties', In: Proceedings of the Performance of Exterior Envelopes of Whole Buildings VIII, Florida
  22. Shelton, B. G., Kirkland, K. H., Flanders, W. D., et al. (2002) 'Profiles of Airborne Fungi in Buildings and Outdoor Environments in the United States', Applied and Environmental Microbiology, 68, 1743-1753 https://doi.org/10.1128/AEM.68.4.1743-1753.2002
  23. Thatcher, T. L., Layton, D. W. (1995) 'Deposition, Resuspension, and Penetration of Particles within a Residence', Atmospheric Environment, 29 (13), 1487-1497 https://doi.org/10.1016/1352-2310(95)00016-R
  24. Trakumas, S., Willeke, K., Grinshpun, S. A., et al. (2001a) 'Particle Emission Characteristics of Filter-Equipped Vacuum Cleaners', AIHAJ 62, 482-493 https://doi.org/10.1202/0002-8894(2001)062<0482:PECOFE>2.0.CO;2
  25. Trakumas, S., Willeke, K., Reponen, T., et al. (2001b) 'Comparison of Filter Bag, Cyclonic, and Wet Dust Collection Methods in Vacuum Cleaners', AIHAJ 62, 573-583 https://doi.org/10.1202/0002-8894(2001)062<0573:COFBCA>2.0.CO;2
  26. VanDbronkhorst, D. A., Persily, A. K.,Emmerich, S. J. (1995) 'Energy Impacts of Air Leakage in US Office Buildings', In: Proceedings of the Implementing the Results of Ventilation Research, 16th AIVC Conference, Palm Springs, CA, 379-391
  27. Willeke, K., Trakumas, S., Grinshpun, S. A., et al. (2001) 'Test Methods for Evaluating the Filtration and Particulate Emission Characteristics of Vacuum Cleaners', AIHAJ, 62, 313-321 https://doi.org/10.1202/0002-8894(2001)062<0313:TMFETF>2.0.CO;2
  28. Wyss, G. D.,Jorgensen, K. H. (1998) A User's Guide to LHS: Sandia's Latin Hypercube Sampling Software, Albuquerque, NM, Sandia National Laboratories