Solid-Liquid Mass Transfer in Gas-Solid-Liquid 3-Phase System Agitated Vessel

기 - 액 - 고 3상계 교반조내의 고-액간 물질이동

  • Lee, Young Sei (School of Applied Chemical Engineering, Sangju National University) ;
  • Kato, Yoshihito (Department of Life & Material Engineering, Nagoya Institute of Technology) ;
  • Suzuki, Junichiro (Department of Life & Material Engineering, Nagoya Institute of Technology)
  • 이영세 (상주대학교 응용화학공학부) ;
  • 加藤禎人 (일본 나고야공업대학 생명물질공학과) ;
  • 鈴木純一郞 (일본 나고야공업대학 생명물질공학과)
  • Received : 2006.07.20
  • Accepted : 2006.09.06
  • Published : 2006.10.10

Abstract

The solid-liquid mass transfer coefficients $k_L$ in a gas-liquid-solid three phases agitated vessel were measured with conventional impellers (e.g. Rushton turbine, paddle, and propeller). For the conventional impellers the rotational speed for the complete suspension $N_{js}$ changes with the impeller height and gas flow rate. Mass transfer coefficient of the Rushton turbin impeller, for which the particle suspension was independent of the aeration, is correlated only with Pgv. Mass transfer coefficients $k_L$ for the Rushton turbine, paddle and propeller impellers were affected by the impeller position.

Rushton turbine, paddle and propeller 임펠러 등 표준적인 임펠러가 부착된 기-액-고 3상교반조에서 고-액간 물질이동계수 $k_L$를 측정하였다. 표준적인 임펠러들에 대한 부유화한계회전수 $N_{js}$는 임펠러 높이와 가스유속에 따라 변했다. 입자부유가 통기에 의존한 Rushton turbine 임펠러의 물질이동계수는 Pgv에만 상관하였다. Rushton turbine, paddle and propeller 임펠러에 대한 물질이동계수 $k_L$은 임펠러의 종류에 의하지 않고 임펠러 위치에 영향을 받았다.

Keywords

Acknowledgement

Supported by : 상주대학교

References

  1. R. C. Chapman, A. W. Nienow, M. Cooke, and J. C. Middleton, Trans. Inst. Chem. Engrs., 59, 134 (1981)
  2. Y. Kato, S. Hiraoka, Y. Tada, T. Shirota, S. T. Koh, Y. S. Lee, and T. Yamaguchi, Kagaku Kogaku Ronbunshu, 21, 5, 948 (1995) https://doi.org/10.1252/kakoronbunshu.21.948
  3. T. N. Zwitering, Chem. Eng. Sci., 8, 244 (1958) https://doi.org/10.1016/0009-2509(58)85031-9
  4. A. W. Nienow, Chem. Eng. Sci., 23, 1453 (1968) https://doi.org/10.1016/0009-2509(68)89055-4
  5. P. H. Calderbank and M. B. Moo-Young, Chem. Eng. Sci., 16, 39 (1961) https://doi.org/10.1016/0009-2509(61)87005-X
  6. D. N. Miller, Ind. Eng. Chem. Process Des. Develop., 10, 365 (1971) https://doi.org/10.1021/i260039a015
  7. Y. Sano, N. Yamaguchi, and T.Adachi, J. Chem. Eng. Japan, 7, 255(1974) https://doi.org/10.1252/jcej.7.255
  8. D. M. Levins and J. R. Glastonbuly, Trans. IChemE, 50, 132 (1972)
  9. S. Hiraoka, Y. Tada, H. Suzuki, H. Mori, T. Aragaki, and I. Yamada, J. Chem. Eng. Japan, 23, 468 (1990) https://doi.org/10.1252/jcej.23.468
  10. F. Grisafi, B. Alberto, and R. Lucio, Can. J. Chem. Eng., 76, 446 (1998) https://doi.org/10.1002/cjce.5450760315
  11. K. Kikuchi, Y. Tadakuma, T. Sugawar, et al., J. Chem. Eng. Japan, 20, 134 (1987b) https://doi.org/10.1252/jcej.20.134
  12. G. M. Marrone and D. J. Kirwan, AICHE J., 32, 523 (1986) https://doi.org/10.1002/aic.690320324
  13. K. Sato, T. Menju, M. Mochizuki, and A. Shono, Kagaku Kogaku Ronbunshu, 21, 137 (1995) https://doi.org/10.1252/kakoronbunshu.21.137
  14. T. Oishi, S. Hiraoka, Y. Kato, Y. Tada, J. Yano, and T. Yamaguchi, Kagaku Kogaku Ronbunshu, 24, 392 (1998) https://doi.org/10.1252/kakoronbunshu.24.392
  15. J. S. Newman, Electrochemical system -Second Edition, 241-264, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA (1991)
  16. G. Baldi, R. Conti, and E. Alaria, Chem. Eng. Sci., 33, 21 (1978) https://doi.org/10.1016/0009-2509(78)85063-5
  17. M. W. Chudacek, Chem. Eng. Sci., 40, 385 (1985) https://doi.org/10.1016/0009-2509(85)85100-9
  18. A. W. Nienow, Can. J. Chem. Eng., 47, 248 (1969) https://doi.org/10.1002/cjce.5450470316
  19. Y. Ohyama and K. Endo, Kagaku Kogaku, 20, 576 (1956) https://doi.org/10.1252/kakoronbunshu1953.20.576