DOI QR코드

DOI QR Code

Simultaneous GC/MS Analyses of Organic acids and Amino acids in Urine using TMS-TFA derivative

TMS-TFA 유도체화를 이용한 소변여지 중 유기산과 아미노산의 GC/MS 동시분석

  • Yoon, Hye-Ran (Biomedical & Pharmaceutical Analysis Lab, College of Pharmacy, Duksung Women's University)
  • 윤혜란 (덕성여자대학교 약학대학 생체대사물 및 의약분석연구실)
  • Received : 2006.01.11
  • Accepted : 2006.02.07
  • Published : 2006.02.27

Abstract

Early diagnosis and medical intervention are critical for the treatment of patients with metabolic disorders. A rapid analytical method was developed for simultaneous quantification of organic acids and amino acids in urine without labor-intensive pre-extraction procedure showing high sensitivity and specificity. A new method consisted of simple two-step trimethylsilyl (TMS)-trifluoroacetyl (TFA) derivatization using GC/MS-selective ion monitoring (SIM). Filter paper urine specimens were dried under nitrogen after being fortified with internal standard (tropate) in a mixture of distilled water and methanol. Methyl orange was added to the residue as indicator reagent. Silyl derivative of carboxylic functional group was followed by trifluoroacetyl derivative for amino functional group. N-methyl-N-(trimethylsilyl-trifluoroacetamide) and N-methyl-bistrifluoroacetamide were consecutively added and heated for 15-20 min at $65^{\circ}C-70^{\circ}C$, for TMS-TFA derivative, respectively. This reactant was analyzed by GC/MS-SIM. Linear dynamic range showed 0.001-50 mg with the detection limit of (S/N=3) 10-200 ng, and the quantification limit of 80-900 ng in urine. Correlation coefficient of regression line was 0.994-0.998. When the method was applied to the patients 'urine, it clearly differentiated the normal from the patient with metabolic disorder. The study showed that the developed method could be the method of choices in rapid and sensitive screening for organic aciduria and amino acidopathy.

본 연구에서는 trimethylsilyl (TMS) 및 trifluoroacetyl (TFA)유도체화를 이용하여 소변여지에서 대사이상 질환을 신속하게 스크리닝하는 GC/MS 분석법을 개발하였다. 유기산과 아미노산을 동시에 유도체화하기 위해 메틸오렌지를 지시약으로 하여 $60^{\circ}C-70^{\circ}C$에서 15-20 분간 카르복실기는 TMS로 아미노기는 TFA로 유도체한 후 GC/MS-SIM으로 분석하였다. 유기산과 아미노산의 직선성의 범위는 0.001-50 mg이었고, 소변에서의 검출한계는 10-200 ng, 정량한계는 80-900 ng 이었다. 직선성을 보이는 범위에서의 상관계수(R2)는 0.994-0.998이었고, 회수율은 methylcitric acid와 glycine을 제외하고 80-100%를 보였다. 이 방법은 기존의 유기산분석에는 GC/MS를 아미노산 분석에는 아미노산분석기를 사용하는 것과 비교할 때 GC/MS만 사용하여 동시에 유기산과 아미노산을 분석함으로써 전처리가 간단하고 짧은 분석시간과 우수한 감도, 정확도, 정밀도를 보여 주었다. 정상인과 대사이상질환 환자의 검체에 적용해 보았을 때, 본 분석방법은 유기산과 아미노산대사이상의 유전성대사질환 환자의 스크리닝, 진단 및 모니터링에 임상적으로 유용함을 보여주었다.

Keywords

References

  1. G. K. Brown, O. Stokke and E. Jellum, J. Chromatogr., 145(2), 177-184 (1978) https://doi.org/10.1016/S0378-4347(00)81337-7
  2. W. Lehnert and H. Niederhoff, Eur. J. Pediatr., 142(3), 208-10 (1984) https://doi.org/10.1007/BF00445599
  3. K. Tanaka and K. J. Isselbacher., J. Biol. Chem., 242(12), 2966-72 (1967)
  4. P. T. Clayton, J Inherit Metab Dis., 24(2), 139-50 Review (2001) https://doi.org/10.1023/A:1010358715835
  5. E. Jellum, E. A. Kvittingen and O. Stokke, Biomed Environ Mass Spectrom., 16(1-12), 57-62 (1988) https://doi.org/10.1002/bms.1200160111
  6. R. A. Chalmers, S. Bickle and R. W. Watts, Clin. Chim Acta., 52(1), 31-41 (1974) https://doi.org/10.1016/0009-8981(74)90385-4
  7. G. Hoffmann, S. Aramaki, E. Blum-Hoffmann, W.L. Nyhan and L. Sweetman., Clin. Chem., 35(4), 587-95 (1989)
  8. M. A. Adams, Z. Chen, P. Landman and T. D. Colmer, Anal Biochem., 266(1), 77-84 (1999) https://doi.org/10.1006/abio.1998.2945
  9. M. A. Hans, E. Heinzle and C. Wittmann, Appl Microbiol Biotechnol., 56(5-6), 776-9 (2001) https://doi.org/10.1007/s002530100708
  10. C. Wittmann, M. Hans and E. Heinzle, Anal Biochem., 307(2), 379-82(2002) https://doi.org/10.1016/S0003-2697(02)00030-1
  11. J. Lee and J. M. Harnly, J. Agric Food Chem., 53(23), 9100-4 (2005) https://doi.org/10.1021/jf051228e
  12. F. C. de Toledo, M. Yonamine, R. L. de Moraes Moreau and O. A. Silva, J. Chromatogr B Analyt Technol Biomed Life Sci., 798(2), 361-5 (2003) https://doi.org/10.1016/j.jchromb.2003.10.008
  13. Henriksen T, Svensmark B, Lindhardt B, Juhler RK, Chemosphere., 44(7), 1531-9. (2001) https://doi.org/10.1016/S0045-6535(00)00532-4
  14. Erratum in: Chemosphere., 57(8), 1037 (2004) https://doi.org/10.1016/j.chemosphere.2004.08.039
  15. H. G. Ugland, M. Krogh and K. E. Rasmussen, J. Chromatogr B Biomed Sci Appl., 701(1), 29-38 (1997) https://doi.org/10.1016/S0378-4347(97)00358-7
  16. S. Yamamoto, S. Kiyama, Y. Watanabe and M. Makita, J Chromatogr., 233, 39-50 (1982) https://doi.org/10.1016/S0378-4347(00)81729-6
  17. J. O. Sass and W. Endres, J Chromatogr A., 776(2), 342-7 (1997) https://doi.org/10.1016/S0378-4347(97)00080-7
  18. K. B. Hammond and S. I. Goodman, Clin Chem., 16(3), 212-4 (1970)
  19. Z. Chen, P. Landman, T. D. Colmer, M.A. and Adams., Anal. Biochem., 259(2), 203-11(1998) https://doi.org/10.1006/abio.1998.2659
  20. C. C. Sweeley, R. Bentley, M. Makita and W. Wells. J. Am. Chem. Soc., 85, 2497-507(1963) https://doi.org/10.1021/ja00899a032
  21. U. Roessner, C. Wagner, J. Kopka, R. N. Trethewey and L. Willmitzer., Plant J., 23(1), 131-42 (2000) https://doi.org/10.1046/j.1365-313x.2000.00774.x
  22. P. Husek, LC-GC Intl., 5, 43-9 (1992)
  23. P. Husek, J. Chromatogr. B. 669, 352-7(1995) https://doi.org/10.1016/0378-4347(95)00115-Y
  24. Y. Shinohara, H, Hasegawa, K. Tagoku and T. Hashimoto., J. Chromatogr. B., 758, 283-7 (2001) https://doi.org/10.1016/S0378-4347(01)00190-6
  25. S. G. Villas-Bas, G. D. Daniel, M. kesson and J. Nielsen, Anal. Biochem. 322, 134-138 (2003) https://doi.org/10.1016/j.ab.2003.07.018
  26. C. R. Roe, D. S. Millington, D. A. Maltby, T. P. Bohan and C. L. Hoppel. J. Clin. Invest., 73(6), 1785-8 (1984) https://doi.org/10.1172/JCI111387
  27. D. S. Millington, N, Kodo, D. L. Norwood and C. R. Roe. J. Inherit. Metab. Dis., 13(3), 321-4 (1990) https://doi.org/10.1007/BF01799385
  28. G. Hoffmann, S. Aramaki, E. Blum-Hoffmann, W. L. Nyhan and L. Sweetman. Clin. Chem., 35(4), 587-95 (1989)